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Soluble two-dimensional photonic-crystal model
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We present an analytical treatment of a two-dimensional square photonic lattice constructed from two
infinite arrays of dielectric sheets at right angles, in the limit of very small sheet thickness and very high
dielectric constant, such that their product is constant. The photonic band structusesafat p-polarized
electromagnetic waves are calculated analytically. This approach enables two varieties of band to be identified
and understood in terms of locally propagating and locally evanescent field distributions in the primitive cell.
The densities of states are interpreted in terms of one- and two-dimensional contributions from the two kinds
of band. As preliminaries to the two-dimensional calculations, we derive the photonic properties of the single
dielectric sheet and of the infinite one-dimensional array of such sH&di863-651X97)07904-X]

PACS numbe(s): 42.70.Qs, 41.20.Jb, 77.96k

I. INTRODUCTION treated numerically by Meade and co-workég15 and
brief details of our own calculations have been repoffi].

The considerable current interest in the band structure$he main advantages of an analytic approach are the physi-
that govern the propagation of electromagnetic wavegal insight into the nature and significance of the photonic
through ordered dielectric crystdl$—4] stems from poten- bands and the ease of computation of the band structure and
tially useful applications in the improvement of semiconduc-density of states. Although the dielectric crystal considered
tor laser sources. The existence of a forbidden gap at th@ere is a limiting form of what could be fabricated in prac-
laser transition frequency can remove unwanted spontaneoii§€; its structure can be approached by practical samples and
emission and greatly improve the efficiency of the devicelts phptonlc properties resemble those of more realistic di-
The first demonstration by Yablonovitch and co-workigs ~ €lectric crystals. . .
of a photonic band gap at microwave frequencies has stimu- The calculations are heavily dependent on the optical
lated many theoretical efforts to understand the behavior oproperties of the single dielectric sheets from which the two-
the electromagnetic field in composite dielectrics and tofimensional structure is formed, particularly the waveguide
identify crystal structures with significant band gaps. On themodes, and these are treated in Sec. Il. The one-dimensional
experimental side, the challenge is to fabricate these strud@ttice, or Bragg stack, of these sheets is briefly considered in
tures on a sufficiently small scale to affect the photon emisS€¢- Ill, and it is shown that there are two kinds of propa-
sion characteristics at the infrared or visible frequencies im@ating Bloch waves, constructed, respectively, from fields
portant in practical lasers. that _have I(_)ca_lly propagating and locally evanescent cha_rac-

Calculations of photonic band structures in one dimensiort€rs in the individual primitive cells of the lattice. The main
can be performed analyticalf], but treatments in two or calculations on.the two-dimensional lattice are presented in
more dimensions have almost all used numerical technique3€C- IV, where it is shown that the same two kinds of Bloch
to integrate Maxwell’s equations. Amongst the numericalvaves occur. Many features of the photonic band dispersion
methods,k-space expansion techniques were first used b\yelatlons and the|r_ densities of states are Calcul_ated_analytl-
Leung and Liu[7], Zhang and Satpathig], and Ho, Chan, cally. The conclusions of the work are summarized in Sec.
and Soukoulis[9], the more versatile transfer matrix ap- V.
proach has been developed by Pendry and MacKinnon
[10,11], and Stefanou, Karathanos, and Modi@g] have Il. DIELECTRIC SHEET
applied an electromagnetic version of the Korringa-Kohn- ) ) _ )

Rostoker method. These various numerical calculations have The one-dimensional lattice treated in Sec. Ill and the
produced a wealth of information on the photonic bands astwo-dimensional lattice treated in Sec. IV are formed from
sociated with a range of composite dielectric structures. ~ dielectric sheets of thicknest and relative permittivitys,

In contrast to earlier work, our aim in this paper is to taken in the limits
present analytic calculations of the propagation of electro-
magnetic waves through a simple form of two-dimensional d—0, e— such thated=m=const. (2.1)
dielectric crystal. The structure takes the form of a square
lattice of very thin, high dielectric constant sheets, similar toThe quantitym defined in this way has the dimensions of
the two-dimensional versiof13] of the Kronig-Penney length, and it provides a single-parameter characterization of
model [14] familiar in the treatment of electronic energy the dielectric sheets in the limit of infinitesimal thickness. In
bands in crystals. This form of crystal has previously beerthe present section, we consider the boundary conditions and
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Az AE=-mn(nXV)-(nXE) (2.6)
and
\\\ ~3
= JE
\\‘I AH=—sgmnx—, 2.7

!

| whereAE andAH are the increments in the fields in passing
| through the dielectric sheet in the direction of the unit vector
: n normal to its surfaces. It should be noted that in applica-
I

Y tions of Egs.(2.6) and (2.7, some components of one
N — _',/Vx boundary condition may duplicate some of the other. Since
ES all of the Maxwell equationgincluding both divergence
% equationg are used in the derivation of Eq®.6) and(2.7),
d this simply reflects the redundancy present in Maxwell's

equations in the absence of sources.
FIG. 1. Geometrical arrangement of a single slab showing the The boundary conditions derived above can be used to
coordinate axes. determine the reflection and transmission coefficients for
monochromatic light of frequency incident on the sheet.
the waveguide modes for a single sheet in this limiting caseFor s polarization the electric vectors of the incident, re-
Such sheets have been used before to model the mirrors fiécted and transmitted fields are parallel to the sheet sur-
Fabry-Peot cavities[17], but we need here to extend previ- faces, and the coefficients that relate the outgoing electric
ous work to cover oblique incidence and waveguide modesand magnetic field amplitudes to the incident amplitudes are

A. Boundary conditions imk2/2k, 1

Figure 1 shows the arrangement of a dielectric slab, which S 1-i(mki2k)’ S 1-i(mkT2ky)
is assumed initially to have a nonzero thickndsnd a finite o ) o
relative permittivitye, and the orientations of the coordinate FOr P polarization the magnetic vectors of the incident, re-
axes. The slab is assumed to have vacuum on either side, afi§ctéd and transmitted fields are parallel to the sheet sur-
the fields just outside the slabat0 andx>0 are indicated faces, and the coefficients that relate the outgoing electric-
by superscripts< and >, respectively. The boundary condi- @nd magnetic-field amplitudes to the incident amplitudes are
tions for the slab as a whole can be determined by the appli- ,
cation of the usual boundary conditions to its separate sur- —imk,/2 1 2.9

(2.8

faces. Alternatively, the boundary conditions can be found in p 1-i(mkJ/2)’ tp 1-i(mkJ/2)"
a single calculation with the help of an imaginary cylinder
whose axis lies at right angles to the slab and whose ends these expressionk= w/c is the magnitude of the vacuum
just protrude through its surfaces. It is found after impositionwave vector and, is its component normal to the dielectric
of the limit given in Eq.(2.1) that the tangential components sheet. The sheet is isotropic in tlye plane, and we arbi-
of the electric field are continuous, trarily take k, to be the component of the vacuum wave
vector parallel to the sheet, with)=0, so that
E)?:E;, E,=E;, (2.2

_ o K+ k2= k%= w?/c?. (2.10
but the normal component suffers a discontinuity,

The magnitudes of the reflection and transmission coeffi-
(2.3 cients cover the complete range of values between 0 and 1 as

the parametem is varied between 0 and. It is easily veri-

fied that both sets of coefficients satisfy the requirements

JE, JE
>_pe<_ -y z
Ex =E, m( oy + (92),
where no superscripts are needed onyttendz component
fields in view of Eq.(2.2). For the magnetic field, the normal Ir|2+]t|?=1, r*t+rt*=0 (2.11)
component is continuous,
- - for a unitary transformation between input and output ampli-
Hy=H,, (24 tudes at the sheet.

but the tangential components suffer discontinuities, )
B. Waveguide modes

We are interested in the waves that propagate along the
dielectric sheet under conditions of total internal reflection.
For a finite-thickness dielectric slab, these waveguide modes

The field discontinuities expressed by E¢a3) and(2.5) are considered for example by Y8, but we need to de-
can be written more generally in the coordinate-independertermine which modes survive in the limit given in EQ.1).
forms We again assume initially that the dielectric slab has a thick-

JE JE
v o s



6026 T. J. SHEPHERD, P. J. ROBERTS, AND RODNEY LOUDON 55

nessd and a finite relative permittivity. It is necessary to
consider the two independent transverse polarizations sepa- 7
rately.

For s polarization the electric fields in the three spatial
regions are taken in the forms

E(r,t)=Z2E(x)ekyy~iot, (2.12 me/e

with traveling-wave behavior inside the dielectric and eva-
nescent decay on either side,

AeHXHd2)  y o1
E(x)=4 Bé™*+Ce "™ —id<x<id (2.13
De W(x~d2)  Igq<x,

FIG. 2. Single-sheet dispersion relatianvs the wave-vector
componentk, parallel to the surfaces, for the guided modes in
infinitesimal sheets. The broken line shows the free-space disper-
sion relation.

wherek, has been replaced by, , andg, must be positive
for a properly guided excitation of the electromagnetic field.
We have again takek,=0, and the relatiori2.10 between

the wave-vector components in vacuum is how modified to tarf (e — 1)% ma/2e ¢)cos 9] = tand, (2.2

2 2 21~2
—qgs+ki=w?/c, 2.19 i
Ox TKy= @ ( and whens—o the angled tends to zero according to

while the components in the dielectric slab satisfy 9= me/2e 12 (2.22
=IMwize . .

K2+k§=sw2/02. (2.15 o ) _ _

This is the only solution of the equations for the symmetric
The waveguide modes are characterized by the property thatode functions that survives in the limit. It follows from Eq.
their wave-vector componeik,, parallel to the surfaces of (2.20 that the internal propagating wave vectortends to
the slab, is larger than the total free-space wave vestor  infinity according to
Elimination of the common wave-vector compon&ptfrom

Egs.(2.14 and(2.19 gives k=e"olc, (2.23
K>+ g2=(e—1)w?/c?. (2.16 ?nd the vacuum evanescent wave vegtpotakes the limiting
orm
The constanté\, B, C, andD in Eq.(2.13 are related by the A
usual boundary conditions at the two surfaces of the slab, Ox— Mo/2c°=q. (2.24
and the consistency condition for the four resulting relations_ =~ =~ | )
takes the form Elimination of g, from Eq.(2.14 now produces th_e relation
between the mode frequeney and the propagating wave-
. k+iqy )2 vector componenk, parallel to the surfaces in the form
eZIKd: T , (217)
K—10x © (1+m2k§)1’2—1 1/2
with the solutions c m2/2 (2.29
tan(«d/2) = qy/« (218 This is the single-sheet dispersion relation and Fig. 2 shows

the variation ofw with k, together with the free-space dis-

persion relation. A similar procedure can be followed for the

antisymmetric modes determined by EQ.19, when tand

tan(xd/2) = — x/q, (2.19 in Eq. (2.2)) is replaced by-cot 9, but the resulting condi-

tion has no solutions in the limig—co.

corresponding to the antisymmetric mode functions. These For p polarization the magnetic fields are taken in the

two trigonometric relations in conjunction with ER.16  form

determine the wave vectors for the guided modes of the di- . . .

electric slab withs polarization. H(r,t)=2H(x)e™*y !, (2.26

Consider now the sheet of infinitesimal thickness defined ) o )
by the limit given in Eq.(2.1). It is helpful to parametrize where the expressions for the magnetic fields in the three

corresponding to symmetric mode functions and the solu
tions

andg, in Eq. (2.16 by spatial regions are similar to those for the electric fields
X given in Eg.(2.13. An analysis of the boundary conditions
k=(e—1)Y¥ w/c)cosy, similar to that used fos polarization leads to the relations
o= (e —1)Y{ w/c)sind, (2.20 tan(«d/2)=eq,/k (2.27

so that Eq.(2.18 takes the form and
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z A. Locally propagating modes

\\\F\

Consider first polarization, where the electric field in the
region of the primitive cell defined by the free space between
the sheets labeled—1 andn is written in the form

E(r) = 2En(r) = ie”‘yy{E: eikxx+ E; e—ikXX}
for (n—1)a<x<na (3.2

FIG. 3. Geometrical arrangement of the one-dimensional arratd the time dependence €xpwt) is understood in all
of infinitesimal sheets. fields. The electric field in the primitive cell is here assumed

to have a propagating nature, with a real value for the wave-
vector componerit, . The lattice is isotropic in thgz plane,
and we have again taken,=0. The vacuum wave-vector
componentsk, and k, perpendicular and parallel to the
analogous to Egs(2.18 and (2.19. The only surviving sheets are again related by E8.10. The relations between
mode in the limite—c now comes from the antisymmetric the fields in adjacent primitive cells can be obtained by ap-
condition (2.28; the propagating wave vector inside the di- plication of the boundary conditions at the dielectric sheets,
electric slab is again given by E(.23 but the evanescent given in Egs.(2.2) to (2.5), where the magnetic field corre-

tan(kd/2) = — k/eQqy (2.28

vacuum wave vector now takes the limiting form sponding to Eq(3.2) is obtained with the use of th€XE
Maxwell equation. The resulting relation between the
Oy— — 2/m. (2.29  electric-field amplitudes in cells andn+1 is conveniently

written in matrix notation as

This negative value ordinarily produces an unacceptable field E* e inka@ 0
distribution whose amplitude increases with distance from ntlio 0 einkxa}
the dielectric sheet, although the mode would take on a n+1

guided nature in the case of a material with negativerhen
the s-polarization guided mode derived above acquires an
unacceptable spatial dependence. Negative valueso€ur
for frequencies below the plasma frequency in metallic
sheets and more generally for frequencies just above the X
transverse resonances in the dielectric functions of a range of
materials[18]. B .
In summary, the dielectric sheet of infinitesimal thicknessWherek_w/C’ as in Eq.(2.10. The product of the second

: : . A and third matrices on the right is the transfer matrix of the
supports a single guided wave with polarization, whose ; S
system[11], and its elements are combinations of phase fac-
frequency and wave-vector components are related by Eq

(2.14), (2.24, and (2.25. There is no guided wave with itz)rgﬁ?cr:gntézzmz)that occur in the reflection and transmission
polarization. The relation between the electric-field amplitudes given in
Eq. (3.9 is entirely derived from the properties of the elec-
I1l. ONE-DIMENSIONAL LATTICE tromagnetic field and the dielectric sheets, but these same
i o . . _field amplitudes are independently related by Bloch’s theo-
We consider in this section the photonic band structure iRem, which applies generally to all forms of excitation in a

an infinite one-dimensional array of the infinitesimal diE|eC'periodic structure. For the present system, Bloch’s theorem
tric sheets described in Sec. Il. The array of sheets with;kes the form

perioda is specified by the dielectric function

—i(mke/2k,)  1—i(mk3/2k,)

1+i(mi/2k,)  i(mke/2k,) }

einkxa 0
0 e—inkxa

Eq
En

: 3.3

Epns1(r+xa)=e""3E(r), (3.9

g(r)y=1+m E 8(Xx—na), (3.1 where u, is the one-dimensional Bloch wave vector and the
n=-= primitive-cell electric-field amplitudes are defined in Eq.
(3.2). We consider here only propagating Bloch waves where
and its spatial arrangement is shown in Fig. 3. Onew, is real. The Bloch wave vector determines the spatial
dimensional structures have previously been extensivelgevelopment of the phase of the photonic excitation as it
treated by many authors, including Y&8], Born and Wolf  propagates through the lattice. By contrast, the wave-vector
[18], and Russell, Birks, and Lloyd-Luc$9], while Dowl- ~ componentk, determines the form of the electromagnetic
ing and Bowderi20] have given some results for the limit of fields in the individual primitive cell, and we refer to it as the
infinitesimal sheets. The discussion here is confined to a prdecal wave vector.
sentation of material that is needed for the two-dimensional The amplitudes in primitive celh+1 are easily elimi-
lattice theory of Sec. IV, and some relevant aspects not cowated from Eqs(3.3) and (3.4), and the resulting pair of
ered by the earlier work, particularly for the limit given in equations for the amplitudes in primitive callare written in
Eqg. (2.2). matrix form as
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[1+i(mi&/2k,)Jea—elmd  j(mié/2k)e (20 Lika
—i(mi@/2k,) el bha  [1-i(ml/2k,)]e” k- glnd

E. B
£ =0. (3.5

The determinant of the>22 matrix essentially identifies the photonic bands generally occur. Thus ®mpolarization at
Bloch exponent expf,a) as the eigenvalue of the transfer the I" point, Eq.(3.7) provides one set of solutions with the
matrix, and the multiplied-out determinant can be written inimplicit form
the form
tan(kya/2) = — mk2/2k, (3.10
e i@ — e mAf[ 1+i(mié/2k,) e

+[1-i(mke/2k,)Je " +1=0 (3.6)

and one with the explicit form
sin(ka/2)=0 or k@a=nm or w=cy(nm/a)*+ks,
n=244....(3.1)

or

coq uya)=cogk.a)— (mk/2k,)sinka). (3.7
The corresponding solutions at tiepoint are
This expression, in conjunction with E(R.10, determines
the dispersion relation for the locally propagating modes,
that is, the dependence of the frequeacyn the Bloch wave
vector u, for given values of the transverse wave-vector

componenk, , for the propagation of electromagnetic wavescogk,a/2)=0 or k,a=n= or w=c(nm/a)2+k2,
through the one-dimensional array of dielectric sheets. The Y

cot(k,a/2) = mk?/2k, (3.12

and

first Brillouin zone of the lattice covers the wave-vector n=1,35.... (3.13
range
Figure 5a) shows these solutions in the forms of plotsaof
—mla<u,<mla, (3.8 againstk, . Each band is bordered by a curve that corre-
sponds to one of thé point solutions from Eq(3.10 or
and we adopt the usual symbols, (3.11) or one of theX point solutions from Eq(3.12 or
(3.13, and these four kinds of solutions occur in rotation as
I' at uy=0, X atu,=mla, (3.9  one moves up the frequency axis.

Similar derivations can be made fprpolarization, where
for the symmetry points in the one-dimensional Brillouin it js now the magnetic field that has a form analogous to that
zone. The continuous lines in Fig. 4 show some constanigiven in Eq.(3.2) for each primitive cell of the array, and the
frequency contours in the, versusk, plane obtained by vxH Maxwell equation is used to obtain the corresponding
solution of Eq.(3.7) with the use of Eq(2.10, where the  glectric fields. The boundary conditiof&2)—(2.5) are again
Bloch wave vector covers the Complete Brillouin zone. ThiSused to relate the fields in adjacent Ce”S, and Bloch’s theo-
figure is further discussed in Sec. Ill B. rem (3.4) again provides an independent connection between

The dispersion relations simplify considerably at the sym+hese fields. The resulting dispersion relation gopolariza-
metry pointsl’ andX, where the maxima and minima of the tjon is

cog u.a)=cogk,a) — smk,sin(k.a), (3.19

and this is used in conjunction with E.10 to obtain the
: variation of w with k, . Simple results for thd” and X dis-
18 persion relations are found from E¢.14) and indeed two

: ‘ of the expressions are identical to the explicit for(Bsll)
and (3.13 obtained fors polarization. The valuen=0 is
additionally allowed in Eq(3.11) for p polarization and this
gives the so-called light line=ck, . The other two expres-
sions are similar to the implicit form&.10 and (3.12 but
with the quantitymk?/2k, replaced bymk /2. Figure %b)
shows the band edge diagram fompolarization. The lower
boundaries of all except the lowest band are the same for
ha andp polarizations.

T

FIG. 4. Constant-frequency contours in the vs k, plane for
modes withs polarization in a one-dimensional array of infinitesi-
mal sheets. The continuous lines show locally propagating solutions The modes discussed above have locally propagating
and the broken lines show locally evanescent solutions. The nunsharacters in the individual primitive cells, as the local wave
bers attached to the curves show the valuesafc. vectork, is assumed to be real. The theory presented in Sec.

B. Locally evanescent modes
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FIG. 5. Bands of dispersion curvéshown shadedw vs the
transverse wave-vector compone#y,, for a periodic one-

FIG. 6. Variation ofw? with the local wave vecton, for the
evanescent modes of a one-dimensional array of infinitesimal
sheets. The broken lines show the exact solut{@ko and(3.17),
while the continuous line shows the approximate solutigs q.

niently replaced byiq,, so that the wave-vector-frequency
relation(2.10 takes the form of Eq(2.14). The calculations
outlined in Sec. Il A remain valid with the changed nature
of the wave vector and thepolarization dispersion relation
(3.7) is converted to

coq @) = cosh{g,a) — (Mw?/2c2q,) sinh(g,a). (3.15

It is emphasized that the Bloch waves continue to have
propagating characters, despite their formation from locally
evanescent electromagnetic-field distributions.

The broken lines in Fig. 4 show some constant-frequency
contours obtained by the solution of E8.15 with the use
of Eq. (2.14). The evanescent modes are characterized by a
transverse wave-vector componé&pgreater tham/c. Some
of the contours change character from locally propagating to
locally evanescent ds, changes from real to imaginary, and
it is clear from Egs.(2.10 or (2.14 that the changeover
occurs at glancing incidence whén=0 or k,=w/c. The
reflection coefficient fors polarization given by Eq(2.8)
takes the value,=—1 at the changeover point, so that the
incident and reflected electric fields interfere destructively to
give zero total field.

The dispersion relation again simplifies at the symmetry
points, but there is now only one kind of solution at each.
Thus the solution of Eq3.15 at T is

tanh(g,a/2) = mw?/2cq, (uy=0) (3.1

and that aiX is

dimensional array of infinitesimal sheets(a) s polarization, with

the light line w=ck, included, andb) p polarization. The modes

coth(g,a/2) = mw?/2c?qy

(uy=mla). (3.1

The broken lines in Fig. 6 show the variations«f with g,

are locally propagating except for the locally evanescent solution®btained from these solutions. The same waveguide solu-
tions appear in a different guise in the part of Fi¢p)30 the
right of the light line wherek,> w/c.

to the right of the light line in(a).

Il B shows that the single dielectric sheet supports wave-

We note that there are no evanescent solutiong fpo-

guide modes witls polarization, and the associated evanesdarization in the absence of any analogous guided waves in
cent fields fall off on either side of the sheet with a charac-the single sheet, although excitations Witj>> w/c do exist

teristic range X, where q is given by Eq.(2.24. We

for an array of finite-thickness dielectric sladg].

accordingly expect the one-dimensional lattice to have analo- The waveguide modes in the individual sheets that form
gous modes and we seek locally evanescent solutions ithe one-dimensional array can be considered as tightly bound
which the local wave vectok, is imaginary, and conve- when
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gqa=maw?/2c?>1, (3.18  Wwhich is identical to Eq(2.25. The evanescent waveguide
modes of the individual dielectric sheets thus combine in the

where Eq(2.24 has been used. In this regime we expect thatight-binding limit (3.18 to produce propagating Bloch
the waveguide modes in a single sheet are only slightly afwaves of the one-dimensional array of sheets. The frequen-
fected by the presence of adjacent sheets in the array. Whejes of these modes are independent of the Bloch wave vec-
the inequality(3.18 is satisfied, the solution§3.16 and  tor u, in conditions where the inequalif3.18) is satisfied.
(3.19 for g, both tend toq, similar to Eq.(2.24), and this It is also straightforward to show that in the limit given by
approximate solution is shown by the continuous line in Fig.Eq. (3.18, the two amplitudes in E¢3.2) have the simple
6. More generallyg,=q is an approximate solution of Eq. ratio
(3.19 irrespective of the magnitude of the Bloch wave vec-
tor u,. This dispersion relation can be rearranged with the

+ - _a2n—1)ga—iuya
help of Eq.(2.14 in the form En/E, =€ s, (3.20
21,2\1/2 1/2
w_ (1+mky) ™ -1 (3.19 Hence, in terms of the amplitudg, in the zeroth cell, the
c m2/2 ' ' electric field takes the form
|
E(r)=2E, " X g im(x-nafg=ax—(n=Da)~imay gdx-Na  for (n—1)a<x<na. (3.20)

It is seen that the field in this expression explicitly satisfiesthe xy plane with a local wave vectok=(k,,k,) whose

Bloch’s theorem(3.4); the term in the outer braces is peri- components again satisfy E¢2.10. The corresponding

odic in the lattice constar#t. As the field around each sheet wave-vector space is thus two dimensional. The Bloch wave

decays rapidly, E3.21) may be written in the approximate vector is denotedu=(u,u,) and the associated two-

form dimensional Brillouin zone of the lattice defined by E4.1)
covers the range

E(n)=2E,e™ > emMy(x—na), (3.22
n=—oo —7T/a<,ux,,uy<77/a (42)

where

¢(X):e—q0\x\ (3.23 Figure 8 shows one quadrant_ of thg BriIIouin_ zone wit_h the
conventional notatiof22] for its points and lines of high

is the form of the wave function aroundsinglesheet in this ~ Symmetry.
limit. Eq. (3.22 is precisely the ansatz for the tight-binding

method, often used in band structure calculatip2s], in

which the multiatom wave function is approximated by a
combination of single-atom wave functions in a manner For a propagation wave vector parallel to the plane,

A. Locally propagating modes

similar to that given in Eq(3.22. the fields continue to decompose irggolarization(E par-
allel to z) andp polarization(E parallel to thexy plane, and
IV. TWO-DIMENSIONAL LATTICE these polarization characters are identical with respect to the

two sets of sheets that form the lattice.
We consider in this section the photonic band structure in  For s polarization, the electric field in a primitive cell
an infinite lattice formed from two identical arrays of infini- specified by indices, andn, takes the form
tesimal dielectric sheets at right angles. &handy axes are
taken as the normals to the sheets, which have indefinite
extents in the direction of theaxis. The array of sheets with y
perioda is specified by the dielectric function

e(r)=1+m 2_ S(x—n,a)+ Z_ Sy—nya) .
" ’ 4.1)

The primitive cell is thus an infinite prism whose cross sec-
tion is a square of sida, and the symmetry of the lattice
corresponds to the point groupm@mor D,,,. The spatial
arrangement of the lattice is shown in Fig. 7.

The lattice defined above is three dimensional, but the
calculations presented here assume propagation parallel to FIG. 7. Geometrical arrangement of the two-dimensional lattice.
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FIG. 8. Quadrant of the Brillouin zone of the square two- (@
dimensional lattice showing the notation for symmetry points and
lines.

0.75

E(r)ziEnx,ny(r)

0.5
=Z{E, "+ E, e "HE, e+ E, e 'V} s / —
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which is a generalization of the locally propagating field -0.25 \\\

e
B
[-2)

(3.2 in a one-dimensional lattice. The corresponding mag-

netic field is obtained from th¥ XE Maxwell equation, and -0.5

the relations between the fields in adjacent primitive cells in N
the xy plane are obtained by application of the boundary 075 ]
conditions(2.2—(2.5). This procedure can be applied sepa-

rately to the adjacent cells in the andy directions. It is

evident from Eq(4.3) that the field in each cell is described

by a four-component vector of field amplitudes, as compared )
with the two components in E¢3.2). The extra components, _ o
however, describe propagation by an additional pair of FIG. 9. Constant—freque_ncy_ cor_ltours in the complete Brillouin
waves with negative-going wave-vectyr components, zone for modes Wlth;.polarlzatlon in a Fwo-dlmgn5|onal array of
which do not couple to the first pair. As a result, the associl"finitesimal sheets witim=2a. The continuous lines show locally
ated(4x4) transfer matrix block diagonalizes to tw@x2) propggatlng solutions and the broken lines show locally evanescent
matrices of the form shown in E¢3.3), and the connections solutlons.' The numbers attached to the curves show the values of
are the same as found for the one-dimensional Iattice‘,”alc‘ which cover the range&@) 0-1.3 andb) 4.5-4.8.

Bloch's theorem also separates into two relations equivalent. . . . .
to Eq. (3.4). The two-dimensional calculation therefore re- similar to Eq. (3.10, and again subject to the constraint

-0.75 -0.5 -0.25 0 025 05 075 1
wa/n

: . ) o (2.10.
sults in a pair of relations similar to E¢3.7), It is instructive to display the behavior of the modes by
cog pu,@) = cog k,a) — (mKe/2k,)sin(k,a) contour diagrams, similar to Fig. 4 for the one-dimensional

lattice. Several of these have already been presented and dis-
cog uya) = cog kya)—(mk2/2ky)sin( k,a) (4.4) cusseg[lG], and we concentrate here on the more interesting
behavior of thes-polarized modes. Constant-frequency con-

and the dispersion relatiom versusy, is obtained by solu- tours are obtained by parametrizing the local wave vektor

tion of these equations subject to the constréint0). in Egs.(4.4) and (4.5 as
A very similar analysis, with the electric fielH in Eq.
(4.3 replaced by the component of the magnetic field, ky=(w/c)cosd, ky=(w/c)sing, k,=0, (4.6)
can be used fop polarization, and the dispersion relations
are obtained by solution of the pair of equations which clearly satisfies Eq2.10 and represents a traveling
local wave. Points g,,u,) are then computed from Egs.
cog ua) =cog ka) — smksin(k,a), (4.4 or (4.5 for constantw as 6 is varied from 0 tow/2.

Figure 9 shows such contours far polarization, with
cog uya) =cogkya) — %mkysin(kya), (4.5 m=2a, and for two ranges of the frequency. Only the con-
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tinuous parts of the contours result from the locally propa-
gating fields and it is seen in the low-frequency regime of
Fig. Aa) that these extend only slightly on either side of the
zone diagonalss, for which u,=pu, . It is clear from Eq.
(4.4) that u, does not vanish whek,=0, and similarlyu,

with k,, and the extremes of each continuous portion of
contour thus correspond to local wave vectors aligned paral-
lel to one set of dielectric sheets. We note that this phenom-
enon does not occur fgr polarization, where all the Bloch .
excitations are associated with propagating local fields. The -

broken sections of the-polarization contours are associated 1F

with evanescent local waves, and these are discussed in Sec. e

IV B. Successive bands for higher frequencies/c>1.3 oL’ ‘ .

are derived completely from evanescent local waves, up to @ T X M r

one of the bands whose contours are shown in Rig. $wo

types of band coexist at these frequencies, one derived from 5 '

evanescent local waves, with almost straight contours, and

the other derived from propagating local waves. At 1
The constant-frequency curves can be translated into the

more conventional dispersion curves by projection onto the <>—/

appropriateu-space directionu, =0 for the A or I'X direc- o S 1

tion, pu,a=m for Z or XM and u,= u, for 3 or MT. The 3

p-polarization dispersion curves for the first two directions 3 ot

have the useful property that they can be computed initially
in a frequency-independent fashion. Thus withset equal
to zero in Eq.(4.5 andk,<w/c the alternative conditions [

sin(k,a/2)=0 or —(mk/2)cogk,a/2) 4.7 0 ‘ ‘
by T’ X M r

are obtained. These equations effectively “quantize” the al-

lowed values ofk,, whereas the corresponding one- FIG. 10. Dispersion relations; vs the Bloch wave vecta, for
dimensional lattice periodic in thedirection, treated in Sec. a two-dimensional lattice wittn=2a showing(a) s polarization

Ill, has a continuous range of available valueskgt The  and(b) p polarization. The continuous lines show locally propagat-
resulting bands for th& X direction are now obtained from ing solutions and the broken lines show locally evanescent solu-

the first equation of Eq4.5), tions.
cog u1,@) = cosy(walc)?— (kya)? these are considered in Sec. IV B. The solutions are nonde-
1 > . = 5 generate in thd'X and XM directions but many of the
= 3my(wl/c)?~kj sin(walc)?~ (k,a)?. modes have twofold degeneracy for Bloch wave vectors with

(4.9 M= py in the MT" direction, including the symmetry points
I andM at the ends of the line. The degeneracy is a direct

Each solution of Eq(4.7) thus generates a family of bands consequence of the symmetry betwegpand u, in Egs.
extending up the frequency axis from a minimum value de{4.4) and(4.5. These equations have some simple solutions
termined by the conditiom=ck, . A similar general method at symmetry points in the Brillouin zone, similar to Egs.
pertains to thexM direction, but the conditio,=u, for ~ (3.11 and (3.13, that are independent of the value it
theMT direction provides no general frequency-independent hus there are fixed values afa/c equal tov27 at symme-
route to the dispersion curves. Neither does there exist &Yy pointM for boths andp polarizations and equal to at
simplification in any direction fos polarization. For these pointX for p polarization. These fixed frequencies, indepen-
curves, the relevant value of, or u, must be found by dent of m, occur in regular progressions up the series of
direct solution of the transcendental equatiofs) or (4.5 photonic bands beyond those shown in the restricted range of
for each value of. Fig. 10.

The resulting dispersion curves for=2a are shown by The long-wavelength behavior of the propagating-mode
the continuous lines in Fig. 10. These include all of thedispersion relations is readily obtained by expansions of Egs.
curves forp polarization shown in Fig. 1®), but fors po- (4.4 and (4.5 for small values of the Bloch wave-vector
larization only the low-frequency band in tReor MI" di- ~ components. Thus fa polarization, we find from Eq4.4)
rection and the continuous curve near the top of Figajl0 Wwith the use of Eq(2.10 that
correspond to Bloch waves formed from locally propagating
fields. These two bands are associated with the continuous 5
contours in Figs. @ and 9b), respectively. It is seen that 2a2= (2 + u2)a~ aw
for s polarization there are also many bands associated with K KxT By ¢
locally evanescent fields, indicated by broken lines, and (4.9

2m
1+ —
a

for pa<li,
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and the long-wavelength dispersion relation is identical in form to Eq.(3.19, and in the tight-binding re-
gime, whereg,a>1, this has the approximate solution
uec
“7 [1+(2mia)]™ (410 O Me?/26%, 4.19

The quantity[1+(2m/a)]2 plays the role of the effective irrespective of the value ofi,. It follows from Eq. (2.14
low-frequency refractive index, and it is seen from E211) that

that 1+(2m/a) is indeed the average relative permittivity of o | Mlw? 12 me? 1
the two-dimensional lattice. Similarly fgr polarization, the ( ) ~——+—, (4.15
long-wavelength dispersion relation obtained from Eg5) 2¢ m

with the use of Eq(2.10 is

ky:E acz "
where the first equality is equivalent to the single-sheet dis-
e persion relation2.25. The approximate form is valid when
0= —————1p- (4.11)  the inequality(3.18 is satisfied and in additiom is of the
[1+(m/a)] order of the lattice constaat or greater. This approximation
may now be inserted in the second of the pair of equations
4.4); only the much larger first term on the right-hand side
f Eq. (4.19 need be retained in the prefactor of the sine
unction, but both terms must be kept within the trigpnomet-
ic functions sincea/m may be significant relative to®2
hus the second equation of Eg.4) becomes

The smaller effective refractive inded+(m/a)]"? for p
polarization reflects the reduced average values of the ele
tric field inside the dielectric sheets. Thus, given the conti-]c
nuity of the field components parallel to the surfaces but th
zero normal components of the electric fields inside th
sheets, +(m/a) is the energy-weighted value of the relative
permittivity [3,15] when this is averaged over all directions maw? a
of propagation. Effective refractive indices for general values cog uya)= cos( T + =
of the wavelength in photonic band gap materials have been

[maw® a
—sin| ———+
2c2 m

considered by Dowling and Bowd¢&3]. maw? a
=v2 COE( T + = + Z) , (4.1
B. Locally evanescent modes
A striking feature of the band structure ferpolarized ~ With solutions
radiation, as demonstrated in FiggaPand 1@a), is the pre- )
dominance of Bloch modes arising from locally evanescent 2:21 (2n—ym— 3+cos‘1 cog pya)
fields. The constant-frequency contours can be obtained by a ma 4 m— ol '
replacement of the propagating wave-vector parametrization
in Eq. (4.6) by the hyperbolic form n=1,2,3..., (4.17
ky=iqx=i(w/c)sinhp, k,=(w/c)coshp, k,=0, that are independent of thecomponent of the Bloch wave
vector. Some examples are shown by the horizontal broken

lines in Fig. 9b).

Similarly, if the x dependences of the fields have propa-
gating characters but thgirdependences are evanescent, the
analysis is the same as in Eq4.13 to (4.16) and the ap-
proximate dispersion relation is

where ¢ ranges from 0 tec. Here thex dependence of the

local field is taken to have evanescent character, whkere

may be replaced byq,, and they dependence retains a

propagating form witrk,> w/c, so that Eq«(2.14) is satis-

fied. The broken contours in Fig(#® are generated by this

parameterization, together with an alternative scheme in maw? a

which k, andk, are interchanged. The broken curves in Fig. coq w,a)=v2 cos(WjL a+

10(a) also signify locally evanescent modes and these ac-

count for most of the Bloch wave propagation over the fre'with solutions

guency range shown.

The regularity of the broken bands in Fig.(&0suggests 2c? a

a common cause and we seek a simple physical explanation. 2=~ {(Zn— Hg——=+cos?!

Similar to the discussion of Sec. Ill B, we look for approxi- ma m

mate solutions of the relationgl.4) for s polarization in

conditions where the inequalit{8.15 holds and the wave- n=123..., (4.19

guide modes of the single sheets are expected to be only

slightly perturbed by their formation into a two-dimensional that are independent of thecomponent of the Bloch wave

lattice. vector. Some examples are shown by the vertical broken

Suppose first, as in E¢4.12), that thex dependences of lines in Fig. 9b).

the fields on both sides of a sheet have evanescent characters,The dispersion relation$4.17) and (4.19 provide four

while the y dependences of the fields retain propagatingdistinct bands for each choice nfwhen account is taken of

forms. The first equation in the pai.4) is converted to the choice of sign in each. These four bands form into two
overlapping pairs separated by a gap; the lower-frequency

coq u,a) = cosh g,a) — (Mw?/2c2q,)sinh(g,a), (4.13 pair for eachn covers the range from

T
-1, (4.18
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The lowest band in Fig. 168), extending down to zero
frequency, and the band shown by the continuous curve near
the top of the figure do not belong to the fourfold units
characteristic of the tightly bound locally evanescent modes.
Thus the inequality3.18 clearly does not apply to the low-
est band, which is everywhere nondegenerate, and takes lo-
cally propagating or locally evanescent characters depending
on the direction of the Bloch wave vector. The band near the
top of Fig. 1Ga) corresponds everywhere to Bloch waves
formed from locally propagating fields. The expansions of
Eqg. (4.13 and the second equation in the pair E4.4) for
small values of the Bloch wave-vector components lead,
with the use of Eq(2.14), to the same low-frequency disper-
sion relation for the locally evanescent modes as obtained in
Eq. (4.10 for the locally propagating modes.

2.75

oac
2.5

225

C. Density of states

The density of modes in the photonic bands is an impor-
tant function in the determination of the optical and thermo-
dynamic properties of the lattice. Adaptation of the conven-

FIG. 11. Dispersion surfaces vs the Bloch wave vector,  tional definition to the two-dimensional Brillouin zone used
over a quadrant of the Brillouin zone for the=1 quartet of locally  here gives the expression
evanescent bands in a two-dimensional lattice wmith 2a.

wa [2a a\ 112 2a T a\li2 P(w)=(277)72§b: J dudlw—wy(p) (4.22
—=|—|2nT—7— — to |—|2n7m—5——=]|| ,
c m 2 m
(4.20
for the density of states per unit frequency range per unit
while the higher-frequency pair covers the range from area of lattice. Herew,(u) is the frequency of the photonic
band labeled at the Bloch wave vector, and the summa-
wa [2a RET: 24 102 tion and integration run over all bands and wave vectors,
2122 onm— _) to |22 <2n77+ T é respectively.
c m m 2 m Figure 12 shows the densities of states for fheand

p-polarized modes as functions of the frequency calculated
numerically from the dispersion relatiorig.4), (4.5, and

Figure 11 shows the set of dispersion surfacesfed, and (4.13. The curves show critical-point singularities associ-
the sets for higher values of are essentially the same, ex- ated with the symmetry points in the Brillouin zone. Con-
cept that the presence of on the left-hand sides of the sider first the density of states f@r polarization shown in
dispersion relations leads to a compression of the bands withig. 12b). The contribution of the lowest-frequency band
increasing frequency when they are plotted against a limear shows an initial linear dependence on the frequency, associ-
axis. ated with the linear dispersiof@.11) close to thel’ point, a

These features of the tight-binding bands are clearly vistogarithmic singularity associated with the saddle at p&int
ible in the dispersion curves farpolarization in Fig. 108,  and a vertical step associated with the maximum in the dis-
where most of the curves are grouped in repeating patterns giersion curves at pointl. The contribution of the second
four bands. For the choice of quadrant shown in Fig. 8, thdand shows vertical steps associated with the minimum and
flat bands on the symmetry linkor I'X are provided by the maximum at poiniX, and logarithmic singularities associated
dispersion relationg4.17) with the two choices of sign, with the saddles at points and X. These steps and singu-
while the curved bands are provided by the dispersion relalarities are characteristic features of densities of states in
tions (4.19, and these roles are reversed on the symmetrywo-dimensional systems. The density of statessf@olar-
line Z or XM. The twofold degeneracies on the liBeor MT’ ization shown in Fig. 1@) includes some similar features,
are obvious consequences of the crossings of pairs of dispdbut the distribution is dominated by the additional contribu-
sion sheets obtained from Eq#.17 and (4.19. Only the tions of the locally evanescent modes, shown by the broken
lowest pair of bands in Fig. 18), belonging to then=1  curves. The frequencies of these modes vary with only a
contribution to the pattern, show significant departures fronsingle Bloch vector component in the tight-binding regime,
their approximate tight-binding forms, and this should beand their contributions to the density of states tend, with
expected since witlwa/c~2 andm=2a, the inequality in increasing frequency, towards one-dimensional forms with
Eq. (3.18 is poorly satisfied. Note that, unlike the Bloch very sharp inverse square-root singularities at their maxima
waves formed from locally propagating fields, there are ncand minima. Comparison of the two parts of Fig. 12 shows
fixed values ofwa/c, independent ofn, for the Bloch waves that there are substantially more statessigolarization than
formed from locally evanescent fields. for p polarization.
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(@) o a/e FIG. 13. Density of states for the tight-bindirgpolarized
8 ‘ ‘ ‘ ‘ modes calculated from E@4.25.
wherei=x or y. Evaluation of this expression at the wave-
6f vector components that satisfy the dispersion relatibf?)
acp(@) or (4.19 leads with the use of Ed4.16) to
2
ol maw* 2a
sint’2 +—
% Lo wn >]‘ i ( c_m
— [o—wy(u)] =
2y TH | v2me sin mam2+3+z
2¢> m 4
(4.29
0 : : .
0 ! 2 s 4 5 The density of state&.22 therefore takes the form
(b) o a/c
[maw?® a w
FIG. 12. Density-of-states functions for the photonic bands il- 2vime | SN 2e2 *mta
lustrated in Fig. 9 showingp) s polarization andb) p polarization. plw)= > 75 , (4.2H
For s polarization, the continuous lines indicate the contributions of mac Sinl/z( maw + _a
modes for which the local wave vector is real, while the broken c? m

lines indicate contributions for which one component of the local
wave vector is imaginary. Fqu polarization, all of the modes have Where an additional factor of 2 results from the two values
real local wave vectors. +u,; of the Bloch wave-vector component for each value of
w. This function is shown in Fig. 13, and it is seen that there
The repeating pattern in the density of statess@olar- :cs goohd ar?_rzepegt with tge (;xact ﬁalqulhatbqn dl'n Figal2 .

ization is contributed by the succession of locally evanescenjfom the third band onward, where the tight- |n_|ng approxi-
dispersion surfaces of the kind illustrated in Fig. 11, and thismatlon is justified for the assumed value wi=2a. The

contribution can be calculated analytically in the tight- argument of the sine in the denominator of E425 van-

binding limit using the dispersion relations derived above.IShes at all of the band-ec_ige frequencies given in EHQO)
Thus the frequencies for insertion ag(g) in Eq. (4.22 are and (4.21), and the density of states thus acquires inverse

obtained from Eqs4.17) and(4.19 and only two dispersion square-root singularities of the form
surfaces contribute for any value ef The § function in Eq. 1
(4.22 involves only a single Bloch wave-vector component, p(w)=
as wy(p) is independent of eithew, or u,, and in order to

perform the corresponding integral we need to convert thi?/vherew is the appropriate adjacent band-edge frequency
. . 0 = .
&function by the usual procedure, using The contribution to the density of states from each pair of

overlapping bands has the same integrated value, which is
5 . straightforwardly obtained from Ed4.25 with the use of
J - ( ac ) sin(uia) Egs.(4.20 and(4.21), by a suitable change of variable, as

meO 1/2
alo—awo|/

(4.26

mac

— [o—wy(p)]=+

Ipi 2m/ [2-coS(ua)]"?

T

sinf u+ —

2V2 (w2 4)

X{(2n—3)m— — _ Ve
[ ) m banddw p(w) 773-2 0 du Sinlz(zu)
—-1/2

coq u;a) 2V2 (w2 2

—1 — 12 —
*cos —\/Q } , (4.23 2 fo du(tanu) =2 (4.27)
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where a standard integral has been uf24]. This result The remaining features in the densities of states shown in
agrees with the value obtained for the total density of stateFig. 12 are associated with the locally propagating modes or
in a pair of bands by straightforward integration of E4220 the mixed propagating-evanescent modes. The linear contri-
over w. The overall density of states of the tightly bound butions at low frequency for both polarizations have the
locally evanescent modes can be assessed by forming raagnitudes predicted by E@l.31) whene is replaced by the
smoothed average of their contributions. Thus the repeatingveraged relative permittivities that appear in the square
patterns of four bands occur approximately at frequenciesoots in the long-wavelength linear dispersion relations de-
given by Eqs(4.20 and(4.21) as rived in Eqs.(4.10 and(4.11). The locally propagating con-
tributions for s polarization and all of the polarization
density of states retain the characteristic two-dimensional
critical-point singularities at the higher frequencies illus-
trated, in contrast to the one-dimensional characters of the
The separation between these frequencies is locally evanescent contributions.
2 5 The contributions of the locally propagating and locally
2mc . A i
_ , (4.29 evanescent waves to t_he densities of states show quite differ-
maw ent behaviors asn is increased from its empty-lattice or
] . ] free-space value of 0. Thus the existence of fixed values of
sinceAn=1, and the smoothed density of states is thereforg, /¢ independent ofn, for selected points on the locally
4 Mo propagating dispersion curves, mentiongd in Sgc. IV A, en-
p(@)= —— = ——. (4.30  sures that the overall distribution of their density of states
a“Aw mac shows only modest changes msis increased. By contrast,

. . ... .the lack of any fixed values aba/c on the locally evanes-
For comparison, the density of states for each polarization ig ¢ dispersion curves, mentioned in Sec. IV B, allows large

a tw.o—dimen§ic.)n.al space entirely filled with a material Ofchanges in their density of states msis increased. This
relative permittivitye is freedom permits the density of stat@s30 to grow linearly
_ 2 with m as the frequencies of the locally evanescent Bloch
plo)=wel2mc?, (439 waves diminish in accordance with E¢.28, and it leads to
and the multiplicative factor @/a in Eq. (4.30 relative to the apparent excess density of states polarization for the

the density of states in free space thus accounts for the afiMited ranges of frequency shown in Figs. 10 and 12.
ditional density of states provided by the dielectric material, _ 't iS Seen from Fig. 12 that three gaps appear in the com-
for both polarizations. bined density of states in the range of frequencies covered.

That all of the additional density of states should appear "€ ranges owa’/c, for which there are no photonic modes
in s polarization and none ip polarization is a consequence ©f the lattice, are found with the use of E¢4.20 and(4.21)
of the restriction of the single-sheet guided-wave modes to t©© P&
polarization, as discussed in Sec. Il B. A superficial compari- (377 1) 12 ( 1|12
L P -) ,

47\ Y2

am

(4.28

w=C

ko

amn

Aw=cC

son of the two parts of Fig. 12 thus gives the impression that
there are more modes withpolarization than wittp polar-
ization, but this is misleading. The number of independent
modes in each extended Brillouin zone of a periodic system (5 1) 12 ( 1)1/2
. . . . to |37— =

is equal to the numbed of unit cells in the sample. Thus in 2 2 2]
the reduced zone scheme, each band must cohtatates,

which correspond to the allowed wave vectors, and the total 117 1\1?
numbers of states are the same for each polarization. The (T‘ 5) to
relative permittivity in any real material is a function of the

frequency,e(w), and it satisfies the sum ruf@5] The dispositions of gaps in the density of states are important
for applications to semiconductor lasers, as they produce
fmdw[Rea(w)—l]=0, (4.32 guenching of the spon.taneous emission over the correspond-
0 ing transition frequencies. It should be emphasized, however,
that the gaps identified here are valid only for propagation in
provided thate(w) has no pole ab=0. The enhancement of the xy plane and that the addition af components of the
the density of state$4.31), for regions of the frequency wave vector may lead to photon modes within these gaps.
wheree(w) is greater than unity, is therefore compensated by
other regions of the frequency, wheséw) is smaller than
unity. The dispersion curves shown in Fig. 10 and the den-
sities of states shown in Fig. 12 are valid over a limited range We have calculated the photonic properties of a single
of frequencies in which the value efw) is assumed essen- dielectric sheet, a one-dimensional lattice of such sheets, and
tially constant. However, a more extended range of calculaa two-dimensional square lattice of the same sheets, in the
tion, with a properly frequency dependerito), would show  limit where the sheet thickness tends to zero as its relative
a reduction in the number & polarized modes at higher permittivity tends to infinity. Although these lattices cannot
frequencies in accordance with Eq4.31) and (4.32, to  be constructed in practice, their properties resemble those of
give the same total numbers of modes for both polarizationsstructures with appropriately thin slabs of high relative per-

1/2
67— =

2

(4.33

V. CONCLUSIONS
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mittivity, and they have the advantage that their photoniche additive property4.1) assumed in our analytical model.
properties can be evaluated analytically to a large extent. Théhe calculated band structures resemble those of our Fig. 10,
analytical treatment provides a more detailed physical unde@nd the resemblance is closer when we take the same value
standing of the natures of the photonic Bloch waves in suclef m/2a. The lowest evanescent-wave bands gguolariza-
structures. tion in Fig. 1(b) of [3,15] are further distorted from the tight-
We have accordingly identified the separation of thebinding forms, with a small lifting of the degeneracieslat
Bloch waves into two distinct categories. Thus a few of the@nd in theX direction, but the part of the next higher band

waves fors polarization and all of the waves far polariza- visible in this figure is closely similar to the form shown in
tion are constructed from fields with locally propagating©Ur Fig- 1da. There are no absolute band gaps, and the

characters in the individual primitive cells of the lattice, existence of a gap fop polarization alone, with none fa

whereas the majority of the Bloch waves f®ipolarization polarizati_on, is_ explainec_;l in ‘e”‘.‘s of the different dist_ribu-
are formed from fields with locally evanescent characters iriIOnS of fields in dlele_ctrlc and air at _the_symmetry paxat

the individual primitive cells. The latter waves are in turn or the lowest b_ands in the two polar|zat|on§.

associated with the waveguide modes of the dielectric sheetfc,b The (;]alculatlglns reporteld Tere a][ehresl,tn(?ted to Eropaga—
which thus dominate the low-frequency photonic band struclon In the two-dimensional plane of the lattice, with wave

ture and density of states of the two-dimensional lattice for/ECtors perpendicular to the dielectric sheets and well-

waves ofs polarization. The locally evanescent photonic defineds andp polarizations. Future work should extend the

bands are assembled from a stack of the basic bu”din?alculaﬁons to propagati_on at _arbitrary angles to the sheets,
blocks illustrated in Fig. 11 and these give a characteristi o obtain the full three-dimensional band structure; such an

repeating pattern to the band structure $opolarization il- ext.ension is cpmpljcated by the remoyal of the simple sepa-
P g.p Sop ration of the fields intes andp polarizations when the wave

lustrated in Fig. 1®&). The corresponding contributions to tor h t-of-pl t Th It Id d
the density of states also form a repeating pattern as illusccc or Nas an out-ol-planeé component. The resuits wouid de-

trated in Figs. 12 and 13. We have shown that the locally termine the complete density of states of the lattice, and it
evanescent modes enhance the photonic density of stat@'?u'd be possm_le to calculate the variation of the atomic
above its free-space value whem# a, but that this is com- spontaneous emission rate as a function of the atomic pOSI-
pensated by reductions below the free-space value that occﬂ?nthan dd transgon freﬁugntcy. IXI]ore genere:l!y, thfe analytlca|1I

for 4m<a in real dielectric materials, whergw) satisfies methods can be applied to other geometries, 1or examp'e,
the required sum rulé4.32. By contrast, the density of triangular and hexagonal lattices, and to three dimensionally

states of the locally propagating modes is less sensitive to th[?ee”c’d'C structures. However, the vector nature of the elec-
tromagnetic fields greatly complicates any more general cal-

value ofm, as a selection of the Bloch waves at symmetry lation ricularly in comparison with th T ndin
points have their frequencies anchoredrténdependent val- culations, particuiarly in compariso € correspo 9
band theories for the scalar electron wave functions, and fur-

ues. . : ) >
Our analytical results may be compared with numericalther extensions (.)f _the _analytlcal approach will be limited by
these practical difficulties.

calculations[3,15] carried out for the same lattice as illus-
trated in Fig. 7, but with sheets of nonzero thickneds (

=0.16a) and finite relative permittivitfe=8.9), leading to ACKNOWLEDGMENTS
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