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Soluble two-dimensional photonic-crystal model
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We present an analytical treatment of a two-dimensional square photonic lattice constructed from two
infinite arrays of dielectric sheets at right angles, in the limit of very small sheet thickness and very high
dielectric constant, such that their product is constant. The photonic band structures fors- and p-polarized
electromagnetic waves are calculated analytically. This approach enables two varieties of band to be identified
and understood in terms of locally propagating and locally evanescent field distributions in the primitive cell.
The densities of states are interpreted in terms of one- and two-dimensional contributions from the two kinds
of band. As preliminaries to the two-dimensional calculations, we derive the photonic properties of the single
dielectric sheet and of the infinite one-dimensional array of such sheets.@S1063-651X~97!07904-X#

PACS number~s!: 42.70.Qs, 41.20.Jb, 77.90.1k
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I. INTRODUCTION

The considerable current interest in the band structu
that govern the propagation of electromagnetic wa
through ordered dielectric crystals@1–4# stems from poten-
tially useful applications in the improvement of semicondu
tor laser sources. The existence of a forbidden gap at
laser transition frequency can remove unwanted spontan
emission and greatly improve the efficiency of the devi
The first demonstration by Yablonovitch and co-workers@5#
of a photonic band gap at microwave frequencies has sti
lated many theoretical efforts to understand the behavio
the electromagnetic field in composite dielectrics and
identify crystal structures with significant band gaps. On
experimental side, the challenge is to fabricate these st
tures on a sufficiently small scale to affect the photon em
sion characteristics at the infrared or visible frequencies
portant in practical lasers.

Calculations of photonic band structures in one dimens
can be performed analytically@6#, but treatments in two or
more dimensions have almost all used numerical techniq
to integrate Maxwell’s equations. Amongst the numeri
methods,k-space expansion techniques were first used
Leung and Liu@7#, Zhang and Satpathy@8#, and Ho, Chan,
and Soukoulis@9#, the more versatile transfer matrix ap
proach has been developed by Pendry and MacKin
@10,11#, and Stefanou, Karathanos, and Modinos@12# have
applied an electromagnetic version of the Korringa-Koh
Rostoker method. These various numerical calculations h
produced a wealth of information on the photonic bands
sociated with a range of composite dielectric structures.

In contrast to earlier work, our aim in this paper is
present analytic calculations of the propagation of elec
magnetic waves through a simple form of two-dimensio
dielectric crystal. The structure takes the form of a squ
lattice of very thin, high dielectric constant sheets, similar
the two-dimensional version@13# of the Kronig-Penney
model @14# familiar in the treatment of electronic energ
bands in crystals. This form of crystal has previously be
551063-651X/97/55~5!/6024~15!/$10.00
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treated numerically by Meade and co-workers@3,15# and
brief details of our own calculations have been reported@16#.
The main advantages of an analytic approach are the ph
cal insight into the nature and significance of the photo
bands and the ease of computation of the band structure
density of states. Although the dielectric crystal conside
here is a limiting form of what could be fabricated in pra
tice, its structure can be approached by practical samples
its photonic properties resemble those of more realistic
electric crystals.

The calculations are heavily dependent on the opt
properties of the single dielectric sheets from which the tw
dimensional structure is formed, particularly the wavegu
modes, and these are treated in Sec. II. The one-dimens
lattice, or Bragg stack, of these sheets is briefly considere
Sec. III, and it is shown that there are two kinds of prop
gating Bloch waves, constructed, respectively, from fie
that have locally propagating and locally evanescent cha
ters in the individual primitive cells of the lattice. The ma
calculations on the two-dimensional lattice are presented
Sec. IV, where it is shown that the same two kinds of Blo
waves occur. Many features of the photonic band dispers
relations and their densities of states are calculated ana
cally. The conclusions of the work are summarized in S
V.

II. DIELECTRIC SHEET

The one-dimensional lattice treated in Sec. III and t
two-dimensional lattice treated in Sec. IV are formed fro
dielectric sheets of thicknessd and relative permittivity«,
taken in the limits

d→0, «→` such that«d[m5const. ~2.1!

The quantitym defined in this way has the dimensions
length, and it provides a single-parameter characterizatio
the dielectric sheets in the limit of infinitesimal thickness.
the present section, we consider the boundary conditions
6024 © 1997 The American Physical Society
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55 6025SOLUBLE TWO-DIMENSIONAL PHOTONIC-CRYSTAL MODEL
the waveguide modes for a single sheet in this limiting ca
Such sheets have been used before to model the mirro
Fabry-Pe´rot cavities@17#, but we need here to extend prev
ous work to cover oblique incidence and waveguide mod

A. Boundary conditions

Figure 1 shows the arrangement of a dielectric slab, wh
is assumed initially to have a nonzero thicknessd and a finite
relative permittivity«, and the orientations of the coordina
axes. The slab is assumed to have vacuum on either side
the fields just outside the slab atx,0 andx.0 are indicated
by superscripts, and., respectively. The boundary cond
tions for the slab as a whole can be determined by the ap
cation of the usual boundary conditions to its separate
faces. Alternatively, the boundary conditions can be found
a single calculation with the help of an imaginary cylind
whose axis lies at right angles to the slab and whose e
just protrude through its surfaces. It is found after imposit
of the limit given in Eq.~2.1! that the tangential componen
of the electric field are continuous,

Ey
.5Ey

,, Ez
.5Ez

, , ~2.2!

but the normal component suffers a discontinuity,

Ex
.5Ex

,2mS ]Ey

]y
1

]Ez

]z D , ~2.3!

where no superscripts are needed on they andz component
fields in view of Eq.~2.2!. For the magnetic field, the norma
component is continuous,

Hx
.5Hx

, , ~2.4!

but the tangential components suffer discontinuities,

Hy
.5Hy

,1«0m
]Ez

]t
, Hz

.5Hz
,2«0m

]Ey

]t
. ~2.5!

The field discontinuities expressed by Eqs.~2.3! and~2.5!
can be written more generally in the coordinate-independ
forms

FIG. 1. Geometrical arrangement of a single slab showing
coordinate axes.
e.
of
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DE52mn~n3“ !•~n3E! ~2.6!

and

DH52«0mn3
]E

]t
, ~2.7!

whereDE andDH are the increments in the fields in passi
through the dielectric sheet in the direction of the unit vec
n normal to its surfaces. It should be noted that in appli
tions of Eqs. ~2.6! and ~2.7!, some components of on
boundary condition may duplicate some of the other. Sin
all of the Maxwell equations~including both divergence
equations! are used in the derivation of Eqs.~2.6! and~2.7!,
this simply reflects the redundancy present in Maxwe
equations in the absence of sources.

The boundary conditions derived above can be used
determine the reflection and transmission coefficients
monochromatic light of frequencyv incident on the sheet
For s polarization the electric vectors of the incident, r
flected and transmitted fields are parallel to the sheet
faces, and the coefficients that relate the outgoing elec
and magnetic field amplitudes to the incident amplitudes

r s5
imk2/2kx

12 i ~mk2/2kx!
, ts5

1

12 i ~mk2/2kx!
. ~2.8!

For p polarization the magnetic vectors of the incident, r
flected and transmitted fields are parallel to the sheet
faces, and the coefficients that relate the outgoing elec
and magnetic-field amplitudes to the incident amplitudes

r p5
2 imkx/2

12 i ~mkx/2!
, tp5

1

12 i ~mkx/2!
. ~2.9!

In these expressions,k5v/c is the magnitude of the vacuum
wave vector andkx is its component normal to the dielectr
sheet. The sheet is isotropic in theyz plane, and we arbi-
trarily take ky to be the component of the vacuum wa
vector parallel to the sheet, withkz50, so that

kx
21ky

25k25v2/c2. ~2.10!

The magnitudes of the reflection and transmission coe
cients cover the complete range of values between 0 and
the parameterm is varied between 0 and̀. It is easily veri-
fied that both sets of coefficients satisfy the requirements

ur u21utu251, r * t1rt *50 ~2.11!

for a unitary transformation between input and output am
tudes at the sheet.

B. Waveguide modes

We are interested in the waves that propagate along
dielectric sheet under conditions of total internal reflectio
For a finite-thickness dielectric slab, these waveguide mo
are considered for example by Yeh@6#, but we need to de-
termine which modes survive in the limit given in Eq.~2.1!.
We again assume initially that the dielectric slab has a thi
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6026 55T. J. SHEPHERD, P. J. ROBERTS, AND RODNEY LOUDON
nessd and a finite relative permittivity«. It is necessary to
consider the two independent transverse polarizations s
rately.

For s polarization the electric fields in the three spat
regions are taken in the forms

E~r ,t !5 ẑE~x!eikyy2 ivt, ~2.12!

with traveling-wave behavior inside the dielectric and ev
nescent decay on either side,

E~x!5H Aeqx~x1d/2! x,2 1
2d

Beikx1Ce2 ikx 2 1
2d,x, 1

2d

De2qx~x2d/2! 1
2d,x,

~2.13!

wherekx has been replaced byiqx , andqx must be positive
for a properly guided excitation of the electromagnetic fie
We have again takenkz50, and the relation~2.10! between
the wave-vector components in vacuum is now modified

2qx
21ky

25v2/c2, ~2.14!

while the components in the dielectric slab satisfy

k21ky
25«v2/c2. ~2.15!

The waveguide modes are characterized by the property
their wave-vector componentky , parallel to the surfaces o
the slab, is larger than the total free-space wave vectorv/c.
Elimination of the common wave-vector componentky from
Eqs.~2.14! and ~2.15! gives

k21qx
25~«21!v2/c2. ~2.16!

The constantsA, B, C, andD in Eq. ~2.13! are related by the
usual boundary conditions at the two surfaces of the s
and the consistency condition for the four resulting relatio
takes the form

e2ikd5S k1 iqx
k2 iqx

D 2, ~2.17!

with the solutions

tan~kd/2!5qx /k ~2.18!

corresponding to symmetric mode functions and the so
tions

tan~kd/2!52k/qx ~2.19!

corresponding to the antisymmetric mode functions. Th
two trigonometric relations in conjunction with Eq.~2.16!
determine the wave vectors for the guided modes of the
electric slab withs polarization.

Consider now the sheet of infinitesimal thickness defin
by the limit given in Eq.~2.1!. It is helpful to parametrizek
andqx in Eq. ~2.16! by

k5~«21!1/2~v/c!cosq,

qx5~«21!1/2~v/c!sinq, ~2.20!

so that Eq.~2.18! takes the form
a-

l

-

.

at

b,
s

-

e

i-

d

tan@~«21!1/2~mv/2«c!cosq#5tanq, ~2.21!

and when«→` the angleq tends to zero according to

q5mv/2«1/2c. ~2.22!

This is the only solution of the equations for the symmet
mode functions that survives in the limit. It follows from Eq
~2.20! that the internal propagating wave vectork tends to
infinity according to

k5«1/2v/c, ~2.23!

and the vacuum evanescent wave vectorqx takes the limiting
form

qx→mv2/2c2[q. ~2.24!

Elimination ofqx from Eq. ~2.14! now produces the relation
between the mode frequencyv and the propagating wave
vector componentky parallel to the surfaces in the form

v

c
5S ~11m2ky

2!1/221

m2/2 D 1/2. ~2.25!

This is the single-sheet dispersion relation and Fig. 2 sho
the variation ofv with ky together with the free-space dis
persion relation. A similar procedure can be followed for t
antisymmetric modes determined by Eq.~2.19!, when tanq
in Eq. ~2.21! is replaced by2cotq, but the resulting condi-
tion has no solutions in the limit«→`.

For p polarization the magnetic fields are taken in t
form

H~r ,t !5 ẑH~x!eikyy2 ivt, ~2.26!

where the expressions for the magnetic fields in the th
spatial regions are similar to those for the electric fie
given in Eq.~2.13!. An analysis of the boundary condition
similar to that used fors polarization leads to the relations

tan~kd/2!5«qx /k ~2.27!

and

FIG. 2. Single-sheet dispersion relationv vs the wave-vector
componentky parallel to the surfaces, for the guided modes
infinitesimal sheets. The broken line shows the free-space dis
sion relation.
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55 6027SOLUBLE TWO-DIMENSIONAL PHOTONIC-CRYSTAL MODEL
tan~kd/2!52k/«qx ~2.28!

analogous to Eqs.~2.18! and ~2.19!. The only surviving
mode in the limit«→` now comes from the antisymmetri
condition ~2.28!; the propagating wave vector inside the d
electric slab is again given by Eq.~2.23! but the evanescen
vacuum wave vector now takes the limiting form

qx→22/m. ~2.29!

This negative value ordinarily produces an unacceptable fi
distribution whose amplitude increases with distance fr
the dielectric sheet, although the mode would take o
guided nature in the case of a material with negative«, when
the s-polarization guided mode derived above acquires
unacceptable spatial dependence. Negative values of« occur
for frequencies below the plasma frequency in meta
sheets and more generally for frequencies just above
transverse resonances in the dielectric functions of a rang
materials@18#.

In summary, the dielectric sheet of infinitesimal thickne
supports a single guided wave withs polarization, whose
frequency and wave-vector components are related by
~2.14!, ~2.24!, and ~2.25!. There is no guided wave withp
polarization.

III. ONE-DIMENSIONAL LATTICE

We consider in this section the photonic band structure
an infinite one-dimensional array of the infinitesimal diele
tric sheets described in Sec. II. The array of sheets w
perioda is specified by the dielectric function

«~r !511m (
n52`

`

d~x2na!, ~3.1!

and its spatial arrangement is shown in Fig. 3. O
dimensional structures have previously been extensiv
treated by many authors, including Yeh@6#, Born and Wolf
@18#, and Russell, Birks, and Lloyd-Lucas@19#, while Dowl-
ing and Bowden@20# have given some results for the limit o
infinitesimal sheets. The discussion here is confined to a
sentation of material that is needed for the two-dimensio
lattice theory of Sec. IV, and some relevant aspects not c
ered by the earlier work, particularly for the limit given i
Eq. ~2.1!.

FIG. 3. Geometrical arrangement of the one-dimensional a
of infinitesimal sheets.
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A. Locally propagating modes

Consider firsts polarization, where the electric field in th
region of the primitive cell defined by the free space betwe
the sheets labeledn21 andn is written in the form

E~r !5 ẑEn~r !5 ẑeikyy$En
1eikxx1En

2e2 ikxx%

for ~n21!a,x,na ~3.2!

and the time dependence exp~2ivt! is understood in all
fields. The electric field in the primitive cell is here assum
to have a propagating nature, with a real value for the wa
vector componentkx . The lattice is isotropic in theyz plane,
and we have again takenkz50. The vacuum wave-vecto
componentskx and ky perpendicular and parallel to th
sheets are again related by Eq.~2.10!. The relations between
the fields in adjacent primitive cells can be obtained by
plication of the boundary conditions at the dielectric shee
given in Eqs.~2.2! to ~2.5!, where the magnetic field corre
sponding to Eq.~3.2! is obtained with the use of the“3E
Maxwell equation. The resulting relation between t
electric-field amplitudes in cellsn andn11 is conveniently
written in matrix notation as

FEn11
1

En11
2 G5Fe2 inkxa

0
0

einkxaG
3F11 i ~mk2/2kx!

2 i ~mk2/2kx!
i ~mk2/2kx!

12 i ~mk2/2kx!
G

3Feinkxa0
0

e2 inkxaGFEn
1

En
2G , ~3.3!

wherek5v/c, as in Eq.~2.10!. The product of the second
and third matrices on the right is the transfer matrix of t
system@11#, and its elements are combinations of phase f
tors and terms that occur in the reflection and transmiss
coefficients~2.8!.

The relation between the electric-field amplitudes given
Eq. ~3.3! is entirely derived from the properties of the ele
tromagnetic field and the dielectric sheets, but these s
field amplitudes are independently related by Bloch’s th
rem, which applies generally to all forms of excitation in
periodic structure. For the present system, Bloch’s theo
takes the form

En11~r1 x̂a!5eimxaEn~r !, ~3.4!

wheremx is the one-dimensional Bloch wave vector and t
primitive-cell electric-field amplitudes are defined in E
~3.2!. We consider here only propagating Bloch waves wh
mx is real. The Bloch wave vector determines the spa
development of the phase of the photonic excitation a
propagates through the lattice. By contrast, the wave-ve
componentkx determines the form of the electromagne
fields in the individual primitive cell, and we refer to it as th
local wave vector.

The amplitudes in primitive celln11 are easily elimi-
nated from Eqs.~3.3! and ~3.4!, and the resulting pair of
equations for the amplitudes in primitive celln are written in
matrix form as

y
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F @11 i ~mk2/2kx!#e
ikxa2eimxa i ~mk2/2kx!e

2~2n21!ikxa

2 i ~mk2/2kx!e
i ~2n21!kxa @12 i ~mk2/2kx!#e

2 ikxa2eimxaGFEn
1

En
2G50. ~3.5!
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The determinant of the 232 matrix essentially identifies th
Bloch exponent exp(imxa) as the eigenvalue of the transf
matrix, and the multiplied-out determinant can be written
the form

e2imxa2eimxa$@11 i ~mk2/2kx!#e
ikxa

1@12 i ~mk2/2kx!#e
2 ikxa%1150 ~3.6!

or

cos~mxa!5cos~kxa!2~mk2/2kx!sin~kxa!. ~3.7!

This expression, in conjunction with Eq.~2.10!, determines
the dispersion relation for the locally propagating mod
that is, the dependence of the frequencyv on the Bloch wave
vector mx for given values of the transverse wave-vec
componentky , for the propagation of electromagnetic wav
through the one-dimensional array of dielectric sheets.
first Brillouin zone of the lattice covers the wave-vect
range

2p/a,mx<p/a, ~3.8!

and we adopt the usual symbols,

G at mx50, X at mx5p/a, ~3.9!

for the symmetry points in the one-dimensional Brillou
zone. The continuous lines in Fig. 4 show some const
frequency contours in themx versusky plane obtained by
solution of Eq.~3.7! with the use of Eq.~2.10!, where the
Bloch wave vector covers the complete Brillouin zone. T
figure is further discussed in Sec. III B.

The dispersion relations simplify considerably at the sy
metry pointsG andX, where the maxima and minima of th

FIG. 4. Constant-frequency contours in themx vs ky plane for
modes withs polarization in a one-dimensional array of infinites
mal sheets. The continuous lines show locally propagating solut
and the broken lines show locally evanescent solutions. The n
bers attached to the curves show the values ofva/c.
,

r

e

t-

s

-

photonic bands generally occur. Thus fors polarization at
theG point, Eq.~3.7! provides one set of solutions with th
implicit form

tan~kxa/2!52mk2/2kx ~3.10!

and one with the explicit form

sin~kxa/2!50 or kxa5np or v5cA~np/a!21ky
2,

n52,4,6,... . ~3.11!

The corresponding solutions at theX point are

cot~kxa/2!5mk2/2kx ~3.12!

and

cos~kxa/2!50 or kxa5np or v5cA~np/a!21ky
2,

n51,3,5,... . ~3.13!

Figure 5~a! shows these solutions in the forms of plots ofv
againstky . Each band is bordered by a curve that cor
sponds to one of theG point solutions from Eq.~3.10! or
~3.11! or one of theX point solutions from Eq.~3.12! or
~3.13!, and these four kinds of solutions occur in rotation
one moves up the frequency axis.

Similar derivations can be made forp polarization, where
it is now the magnetic field that has a form analogous to t
given in Eq.~3.2! for each primitive cell of the array, and th
“3H Maxwell equation is used to obtain the correspond
electric fields. The boundary conditions~2.2!–~2.5! are again
used to relate the fields in adjacent cells, and Bloch’s th
rem ~3.4! again provides an independent connection betw
these fields. The resulting dispersion relation forp polariza-
tion is

cos~mxa!5cos~kxa!2 1
2mkxsin~kxa!, ~3.14!

and this is used in conjunction with Eq.~2.10! to obtain the
variation ofv with ky . Simple results for theG andX dis-
persion relations are found from Eq.~3.14! and indeed two
of the expressions are identical to the explicit forms~3.11!
and ~3.13! obtained fors polarization. The valuen50 is
additionally allowed in Eq.~3.11! for p polarization and this
gives the so-called light linev5cky . The other two expres-
sions are similar to the implicit forms~3.10! and ~3.12! but
with the quantitymk2/2kx replaced bymkx/2. Figure 5~b!
shows the band edge diagram forp polarization. The lower
boundaries of all except the lowest band are the same fs
andp polarizations.

B. Locally evanescent modes

The modes discussed above have locally propaga
characters in the individual primitive cells, as the local wa
vectorkx is assumed to be real. The theory presented in S
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55 6029SOLUBLE TWO-DIMENSIONAL PHOTONIC-CRYSTAL MODEL
II B shows that the single dielectric sheet supports wa
guide modes withs polarization, and the associated evan
cent fields fall off on either side of the sheet with a char
teristic range 1/q, where q is given by Eq. ~2.24!. We
accordingly expect the one-dimensional lattice to have an
gous modes and we seek locally evanescent solution
which the local wave vectorkx is imaginary, and conve

FIG. 5. Bands of dispersion curves~shown shaded! v vs the
transverse wave-vector componentky , for a periodic one-
dimensional array of infinitesimal sheets:~a! s polarization, with
the light linev5cky included, and~b! p polarization. The modes
are locally propagating except for the locally evanescent solut
to the right of the light line in~a!.
-
-
-

o-
in

niently replaced byiqx , so that the wave-vector-frequenc
relation~2.10! takes the form of Eq.~2.14!. The calculations
outlined in Sec. III A remain valid with the changed natu
of the wave vector and thes-polarization dispersion relation
~3.7! is converted to

cos~mxa!5cosh~qxa!2~mv2/2c2qx!sinh~qxa!. ~3.15!

It is emphasized that the Bloch waves continue to ha
propagating characters, despite their formation from loca
evanescent electromagnetic-field distributions.

The broken lines in Fig. 4 show some constant-freque
contours obtained by the solution of Eq.~3.15! with the use
of Eq. ~2.14!. The evanescent modes are characterized b
transverse wave-vector componentky greater thanv/c. Some
of the contours change character from locally propagating
locally evanescent askx changes from real to imaginary, an
it is clear from Eqs.~2.10! or ~2.14! that the changeove
occurs at glancing incidence whenkx50 or ky5v/c. The
reflection coefficient fors polarization given by Eq.~2.8!
takes the valuer s521 at the changeover point, so that th
incident and reflected electric fields interfere destructively
give zero total field.

The dispersion relation again simplifies at the symme
points, but there is now only one kind of solution at eac
Thus the solution of Eq.~3.15! at G is

tanh~qxa/2!5mv2/2c2qx ~mx50! ~3.16!

and that atX is

coth~qxa/2!5mv2/2c2qx ~mx5p/a!. ~3.17!

The broken lines in Fig. 6 show the variations ofv2 with qx
obtained from these solutions. The same waveguide s
tions appear in a different guise in the part of Fig. 5~a! to the
right of the light line whereky.v/c.

We note that there are no evanescent solutions forp po-
larization in the absence of any analogous guided wave
the single sheet, although excitations withky.v/c do exist
for an array of finite-thickness dielectric slabs@19#.

The waveguide modes in the individual sheets that fo
the one-dimensional array can be considered as tightly bo
when

s

FIG. 6. Variation ofv2 with the local wave vectorqx for the
evanescent modes of a one-dimensional array of infinitesi
sheets. The broken lines show the exact solutions~3.16! and~3.17!,
while the continuous line shows the approximate solutionqx5q.
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qa5mav2/2c2@1, ~3.18!

where Eq.~2.24! has been used. In this regime we expect t
the waveguide modes in a single sheet are only slightly
fected by the presence of adjacent sheets in the array. W
the inequality ~3.18! is satisfied, the solutions~3.16! and
~3.17! for qx both tend toq, similar to Eq.~2.24!, and this
approximate solution is shown by the continuous line in F
6. More generallyqx5q is an approximate solution of Eq
~3.15! irrespective of the magnitude of the Bloch wave ve
tor mx . This dispersion relation can be rearranged with
help of Eq.~2.14! in the form

v

c
5S ~11m2ky

2!1/221

m2/2 D 1/2, ~3.19!
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which is identical to Eq.~2.25!. The evanescent waveguid
modes of the individual dielectric sheets thus combine in
tight-binding limit ~3.18! to produce propagating Bloch
waves of the one-dimensional array of sheets. The frequ
cies of these modes are independent of the Bloch wave
tor mx in conditions where the inequality~3.18! is satisfied.

It is also straightforward to show that in the limit given b
Eq. ~3.18!, the two amplitudes in Eq.~3.2! have the simple
ratio

En
1/En

25e~2n21!qa2 imxa. ~3.20!

Hence, in terms of the amplitudeE0
2 in the zeroth cell, the

electric field takes the form
E~r !5 ẑE0
2eikyy1 imxx$e2 imx~x2na!@e2q~x2~n21!a!2 imxa1eq~x2na!#% for ~n21!a,x,na. ~3.21!
ave
-

he
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ce.
It is seen that the field in this expression explicitly satisfi
Bloch’s theorem~3.4!; the term in the outer braces is per
odic in the lattice constanta. As the field around each she
decays rapidly, Eq.~3.21! may be written in the approximat
form

E~r !5 ẑE0
2eikyy (

n52`

`

eimxnac~x2na!, ~3.22!

where

c~x!5e2q0uxu ~3.23!

is the form of the wave function around asinglesheet in this
limit. Eq. ~3.22! is precisely the ansatz for the tight-bindin
method, often used in band structure calculations@21#, in
which the multiatom wave function is approximated by
combination of single-atom wave functions in a mann
similar to that given in Eq.~3.22!.

IV. TWO-DIMENSIONAL LATTICE

We consider in this section the photonic band structure
an infinite lattice formed from two identical arrays of infin
tesimal dielectric sheets at right angles. Thex andy axes are
taken as the normals to the sheets, which have indefi
extents in the direction of thez axis. The array of sheets wit
perioda is specified by the dielectric function

«~r !511mH (
nx52`

`

d~x2nxa!1 (
ny52`

`

d~y2nya!J .
~4.1!

The primitive cell is thus an infinite prism whose cross s
tion is a square of sidea, and the symmetry of the lattic
corresponds to the point group 4/mmmor D4h. The spatial
arrangement of the lattice is shown in Fig. 7.

The lattice defined above is three dimensional, but
calculations presented here assume propagation parall
s

r

n

ite

-

e
to

the xy plane with a local wave vectork5(kx ,ky) whose
components again satisfy Eq.~2.10!. The corresponding
wave-vector space is thus two dimensional. The Bloch w
vector is denotedm5(mx ,my) and the associated two
dimensional Brillouin zone of the lattice defined by Eq.~4.1!
covers the range

2p/a,mx ,my,p/a. ~4.2!

Figure 8 shows one quadrant of the Brillouin zone with t
conventional notation@22# for its points and lines of high
symmetry.

A. Locally propagating modes

For a propagation wave vector parallel to thexy plane,
the fields continue to decompose intos polarization~E par-
allel to z! andp polarization~E parallel to thexy plane!, and
these polarization characters are identical with respect to
two sets of sheets that form the lattice.

For s polarization, the electric field in a primitive ce
specified by indicesnx andny takes the form

FIG. 7. Geometrical arrangement of the two-dimensional latti
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E~r !5 ẑEnx ,ny
~r !

5 ẑ$Enx
1eikxx1Enx

2e2 ikxx%$Eny
1eikyy1Eny

2e2 ikyy%

for ~nx21!a,x,nxa, ~ny21!a,y,nya,
(4.3)

which is a generalization of the locally propagating fie
~3.2! in a one-dimensional lattice. The corresponding m
netic field is obtained from the“3E Maxwell equation, and
the relations between the fields in adjacent primitive cells
the xy plane are obtained by application of the bounda
conditions~2.2!–~2.5!. This procedure can be applied sep
rately to the adjacent cells in thex and y directions. It is
evident from Eq.~4.3! that the field in each cell is describe
by a four-component vector of field amplitudes, as compa
with the two components in Eq.~3.2!. The extra components
however, describe propagation by an additional pair
waves with negative-going wave-vectory components,
which do not couple to the first pair. As a result, the asso
ated~434! transfer matrix block diagonalizes to two~232!
matrices of the form shown in Eq.~3.3!, and the connections
are the same as found for the one-dimensional latt
Bloch’s theorem also separates into two relations equiva
to Eq. ~3.4!. The two-dimensional calculation therefore r
sults in a pair of relations similar to Eq.~3.7!,

cos~mxa!5cos~kxa!2~mk2/2kx!sin~kxa!

cos~mya!5cos~kya!2~mk2/2ky!sin~kya! ~4.4!

and the dispersion relation,v versusm, is obtained by solu-
tion of these equations subject to the constraint~2.10!.

A very similar analysis, with the electric fieldE in Eq.
~4.3! replaced by thez component of the magnetic fieldH,
can be used forp polarization, and the dispersion relation
are obtained by solution of the pair of equations

cos~mxa!5cos~kxa!2 1
2mkxsin~kxa!,

cos~mya!5cos~kya!2 1
2mkysin~kya!, ~4.5!

FIG. 8. Quadrant of the Brillouin zone of the square tw
dimensional lattice showing the notation for symmetry points a
lines.
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similar to Eq. ~3.10!, and again subject to the constrai
~2.10!.

It is instructive to display the behavior of the modes
contour diagrams, similar to Fig. 4 for the one-dimensio
lattice. Several of these have already been presented and
cussed@16#, and we concentrate here on the more interest
behavior of thes-polarized modes. Constant-frequency co
tours are obtained by parametrizing the local wave vectok
in Eqs.~4.4! and ~4.5! as

kx5~v/c!cosu, ky5~v/c!sinu, kz50, ~4.6!

which clearly satisfies Eq.~2.10! and represents a travelin
local wave. Points (mx ,my) are then computed from Eqs
~4.4! or ~4.5! for constantv as u is varied from 0 top/2.
Figure 9 shows such contours fors polarization, with
m52a, and for two ranges of the frequency. Only the co

d

FIG. 9. Constant-frequency contours in the complete Brillou
zone for modes withs polarization in a two-dimensional array o
infinitesimal sheets withm52a. The continuous lines show locally
propagating solutions and the broken lines show locally evanes
solutions. The numbers attached to the curves show the value
va/c, which cover the ranges~a! 0–1.3 and~b! 4.5–4.8.
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tinuous parts of the contours result from the locally prop
gating fields and it is seen in the low-frequency regime
Fig. 9~a! that these extend only slightly on either side of t
zone diagonalsS, for which mx5my . It is clear from Eq.
~4.4! that mx does not vanish whenkx50, and similarlymy
with ky , and the extremes of each continuous portion
contour thus correspond to local wave vectors aligned pa
lel to one set of dielectric sheets. We note that this phen
enon does not occur forp polarization, where all the Bloch
excitations are associated with propagating local fields.
broken sections of thes-polarization contours are associat
with evanescent local waves, and these are discussed in
IV B. Successive bands for higher frequencies~va/c.1.3!
are derived completely from evanescent local waves, up
one of the bands whose contours are shown in Fig. 9~b!. Two
types of band coexist at these frequencies, one derived
evanescent local waves, with almost straight contours,
the other derived from propagating local waves.

The constant-frequency curves can be translated into
more conventional dispersion curves by projection onto
appropriatem-space direction:my50 for theD or GX direc-
tion, mxa5p for Z or XM andmx5my for S or MG. The
p-polarization dispersion curves for the first two directio
have the useful property that they can be computed initi
in a frequency-independent fashion. Thus withmy set equal
to zero in Eq.~4.5! andky<v/c the alternative conditions

sin~kya/2!50 or 2~mky/2!cos~kya/2! ~4.7!

are obtained. These equations effectively ‘‘quantize’’ the
lowed values of ky , whereas the corresponding on
dimensional lattice periodic in thex direction, treated in Sec
III, has a continuous range of available values ofky . The
resulting bands for theGX direction are now obtained from
the first equation of Eq.~4.5!,

cos~mxa!5cosA~va/c!22~kya!2

2 1
2mA~v/c!22ky

2 sinA~va/c!22~kya!2.

~4.8!

Each solution of Eq.~4.7! thus generates a family of band
extending up the frequency axis from a minimum value
termined by the conditionv>cky . A similar general method
pertains to theXM direction, but the conditionmx5my for
theMG direction provides no general frequency-independ
route to the dispersion curves. Neither does there exi
simplification in any direction fors polarization. For these
curves, the relevant value ofmx or my must be found by
direct solution of the transcendental equations~4.4! or ~4.5!
for each value ofv.

The resulting dispersion curves form52a are shown by
the continuous lines in Fig. 10. These include all of t
curves forp polarization shown in Fig. 10~b!, but for s po-
larization only the low-frequency band in theS or MG di-
rection and the continuous curve near the top of Fig. 10~a!
correspond to Bloch waves formed from locally propagat
fields. These two bands are associated with the continu
contours in Figs. 9~a! and 9~b!, respectively. It is seen tha
for s polarization there are also many bands associated
locally evanescent fields, indicated by broken lines, a
-
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these are considered in Sec. IV B. The solutions are non
generate in theGX and XM directions but many of the
modes have twofold degeneracy for Bloch wave vectors w
mx5my in theMG direction, including the symmetry point
G andM at the ends of the line. The degeneracy is a dir
consequence of the symmetry betweenmx and my in Eqs.
~4.4! and~4.5!. These equations have some simple solutio
at symmetry points in the Brillouin zone, similar to Eq
~3.11! and ~3.13!, that are independent of the value ofm.
Thus there are fixed values ofva/c equal to&p at symme-
try pointM for boths andp polarizations and equal top at
pointX for p polarization. These fixed frequencies, indepe
dent of m, occur in regular progressions up the series
photonic bands beyond those shown in the restricted rang
Fig. 10.

The long-wavelength behavior of the propagating-mo
dispersion relations is readily obtained by expansions of E
~4.4! and ~4.5! for small values of the Bloch wave-vecto
components. Thus fors polarization, we find from Eq.~4.4!
with the use of Eq.~2.10! that

m2a25~mx
21my

2!a2'
a2v2

c2 S 11
2m

a D for ma!1,

~4.9!

FIG. 10. Dispersion relations,v vs the Bloch wave vectorm, for
a two-dimensional lattice withm52a showing ~a! s polarization
and~b! p polarization. The continuous lines show locally propag
ing solutions and the broken lines show locally evanescent s
tions.
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55 6033SOLUBLE TWO-DIMENSIONAL PHOTONIC-CRYSTAL MODEL
and the long-wavelength dispersion relation is

v5
mc

@11~2m/a!#1/2
. ~4.10!

The quantity@11(2m/a)#1/2 plays the role of the effective
low-frequency refractive index, and it is seen from Eq.~2.1!
that 11(2m/a) is indeed the average relative permittivity
the two-dimensional lattice. Similarly forp polarization, the
long-wavelength dispersion relation obtained from Eq.~4.5!
with the use of Eq.~2.10! is

v5
mc

@11~m/a!#1/2
. ~4.11!

The smaller effective refractive index@11(m/a)#1/2 for p
polarization reflects the reduced average values of the e
tric field inside the dielectric sheets. Thus, given the co
nuity of the field components parallel to the surfaces but
zero normal components of the electric fields inside
sheets, 11(m/a) is the energy-weighted value of the relativ
permittivity @3,15# when this is averaged over all direction
of propagation. Effective refractive indices for general valu
of the wavelength in photonic band gap materials have b
considered by Dowling and Bowden@23#.

B. Locally evanescent modes

A striking feature of the band structure fors-polarized
radiation, as demonstrated in Figs. 9~a! and 10~a!, is the pre-
dominance of Bloch modes arising from locally evanesc
fields. The constant-frequency contours can be obtained
replacement of the propagating wave-vector parametriza
in Eq. ~4.6! by the hyperbolic form

kx[ iqx5 i ~v/c!sinhw, ky5~v/c!coshw, kz50,
~4.12!

wherew ranges from 0 tò . Here thex dependence of the
local field is taken to have evanescent character, wherkx
may be replaced byiqx , and they dependence retains
propagating form withky.v/c, so that Eq.~2.14! is satis-
fied. The broken contours in Fig. 9~a! are generated by thi
parameterization, together with an alternative scheme
which kx andky are interchanged. The broken curves in F
10~a! also signify locally evanescent modes and these
count for most of the Bloch wave propagation over the f
quency range shown.

The regularity of the broken bands in Fig. 10~a! suggests
a common cause and we seek a simple physical explana
Similar to the discussion of Sec. III B, we look for approx
mate solutions of the relations~4.4! for s polarization in
conditions where the inequality~3.15! holds and the wave
guide modes of the single sheets are expected to be
slightly perturbed by their formation into a two-dimension
lattice.

Suppose first, as in Eq.~4.12!, that thex dependences o
the fields on both sides of a sheet have evanescent chara
while the y dependences of the fields retain propagat
forms. The first equation in the pair~4.4! is converted to

cos~mxa!5cosh~qxa!2~mv2/2c2qx!sinh~qxa!, ~4.13!
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identical in form to Eq.~3.15!, and in the tight-binding re-
gime, whereqxa@1, this has the approximate solution

qx5mv2/2c2, ~4.14!

irrespective of the value ofmx . It follows from Eq. ~2.14!
that

ky5
v

c Sm2v2

4c2
11D 1/2' mv2

2c2
1

1

m
, ~4.15!

where the first equality is equivalent to the single-sheet d
persion relation~2.25!. The approximate form is valid when
the inequality~3.18! is satisfied and in additionm is of the
order of the lattice constanta or greater. This approximation
may now be inserted in the second of the pair of equati
~4.4!; only the much larger first term on the right-hand si
of Eq. ~4.15! need be retained in the prefactor of the si
function, but both terms must be kept within the trigonom
ric functions sincea/m may be significant relative to 2p.
Thus the second equation of Eq.~4.4! becomes

cos~mya!5cosSmav2

2c2
1

a

mD2sinSmav2

2c2
1

a

mD
5& cosSmav2

2c2
1

a

m
1

p

4 D , ~4.16!

with solutions

v25
2c2

ma H ~2n2 1
4 !p2

a

m
6cos21S cos~mya!

&
D J ,

n51,2,3,..., ~4.17!

that are independent of thex component of the Bloch wave
vector. Some examples are shown by the horizontal bro
lines in Fig. 9~b!.

Similarly, if the x dependences of the fields have prop
gating characters but theiry dependences are evanescent,
analysis is the same as in Eqs.~4.13! to ~4.16! and the ap-
proximate dispersion relation is

cos~mxa!5& cosSmav2

2c2
1

a

m
1

p

4 D , ~4.18!

with solutions

v25
2c2

ma H ~2n2 1
4 !p2

a

m
6cos21S cos~mxa!

&
D J ,

n51,2,3,..., ~4.19!

that are independent of they component of the Bloch wave
vector. Some examples are shown by the vertical bro
lines in Fig. 9~b!.

The dispersion relations~4.17! and ~4.19! provide four
distinct bands for each choice ofn when account is taken o
the choice of sign in each. These four bands form into t
overlapping pairs separated by a gap; the lower-freque
pair for eachn covers the range from
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va

c
5F2am S 2np2p2

a

mD G1/2 to F2am S 2np2
p

2
2

a

mD G1/2,
~4.20!

while the higher-frequency pair covers the range from

va

c
5F2am S 2np2

a

mD G1/2 to F2am S 2np1
p

2
2

a

mD G1/2.
~4.21!

Figure 11 shows the set of dispersion surfaces forn51, and
the sets for higher values ofn are essentially the same, ex
cept that the presence ofv2 on the left-hand sides of the
dispersion relations leads to a compression of the bands w
increasing frequency when they are plotted against a lineav
axis.

These features of the tight-binding bands are clearly v
ible in the dispersion curves fors polarization in Fig. 10~a!,
where most of the curves are grouped in repeating pattern
four bands. For the choice of quadrant shown in Fig. 8, t
flat bands on the symmetry lineD or GX are provided by the
dispersion relations~4.17! with the two choices of sign,
while the curved bands are provided by the dispersion re
tions ~4.19!, and these roles are reversed on the symme
line Z orXM. The twofold degeneracies on the lineS orMG
are obvious consequences of the crossings of pairs of disp
sion sheets obtained from Eqs.~4.17! and ~4.19!. Only the
lowest pair of bands in Fig. 10~a!, belonging to then51
contribution to the pattern, show significant departures fro
their approximate tight-binding forms, and this should b
expected since withva/c'2 andm52a, the inequality in
Eq. ~3.18! is poorly satisfied. Note that, unlike the Bloch
waves formed from locally propagating fields, there are n
fixed values ofva/c, independent ofm, for the Bloch waves
formed from locally evanescent fields.

FIG. 11. Dispersion surfacesv vs the Bloch wave vectorm,
over a quadrant of the Brillouin zone for then51 quartet of locally
evanescent bands in a two-dimensional lattice withm52a.
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The lowest band in Fig. 10~a!, extending down to zero
frequency, and the band shown by the continuous curve n
the top of the figure do not belong to the fourfold un
characteristic of the tightly bound locally evanescent mod
Thus the inequality~3.18! clearly does not apply to the low
est band, which is everywhere nondegenerate, and take
cally propagating or locally evanescent characters depen
on the direction of the Bloch wave vector. The band near
top of Fig. 10~a! corresponds everywhere to Bloch wav
formed from locally propagating fields. The expansions
Eq. ~4.13! and the second equation in the pair Eq.~4.4! for
small values of the Bloch wave-vector components le
with the use of Eq.~2.14!, to the same low-frequency dispe
sion relation for the locally evanescent modes as obtaine
Eq. ~4.10! for the locally propagating modes.

C. Density of states

The density of modes in the photonic bands is an imp
tant function in the determination of the optical and therm
dynamic properties of the lattice. Adaptation of the conve
tional definition to the two-dimensional Brillouin zone use
here gives the expression

r~v!5~2p!22(
b
E d2md„v2vb~m!… ~4.22!

for the density of states per unit frequency range per u
area of lattice. Herevb~m! is the frequency of the photoni
band labeledb at the Bloch wave vectorm, and the summa-
tion and integration run over all bands and wave vecto
respectively.

Figure 12 shows the densities of states for thes- and
p-polarized modes as functions of the frequency calcula
numerically from the dispersion relations~4.4!, ~4.5!, and
~4.13!. The curves show critical-point singularities asso
ated with the symmetry points in the Brillouin zone. Co
sider first the density of states forp polarization shown in
Fig. 12~b!. The contribution of the lowest-frequency ban
shows an initial linear dependence on the frequency, ass
ated with the linear dispersion~4.11! close to theG point, a
logarithmic singularity associated with the saddle at pointX,
and a vertical step associated with the maximum in the
persion curves at pointM . The contribution of the second
band shows vertical steps associated with the minimum
maximum at pointX, and logarithmic singularities associate
with the saddles at pointsG andX. These steps and singu
larities are characteristic features of densities of states
two-dimensional systems. The density of states fors polar-
ization shown in Fig. 12~a! includes some similar features
but the distribution is dominated by the additional contrib
tions of the locally evanescent modes, shown by the bro
curves. The frequencies of these modes vary with onl
single Bloch vector component in the tight-binding regim
and their contributions to the density of states tend, w
increasing frequency, towards one-dimensional forms w
very sharp inverse square-root singularities at their max
and minima. Comparison of the two parts of Fig. 12 sho
that there are substantially more states fors polarization than
for p polarization.
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The repeating pattern in the density of states fors polar-
ization is contributed by the succession of locally evanesc
dispersion surfaces of the kind illustrated in Fig. 11, and t
contribution can be calculated analytically in the tigh
binding limit using the dispersion relations derived abo
Thus the frequencies for insertion asvb~m! in Eq. ~4.22! are
obtained from Eqs.~4.17! and~4.19! and only two dispersion
surfaces contribute for any value ofv. Thed function in Eq.
~4.22! involves only a single Bloch wave-vector compone
asvb~m! is independent of eithermx or my , and in order to
perform the corresponding integral we need to convert
d-function by the usual procedure, using

]

]m i
@v2vb~m i !#57S ac22mD 1/2 sin~m ia!

@22cos2~m ia!#1/2

3H ~2n2 1
4 !p2

a

m

6cos21S cos~m ia!

&
D J 21/2

, ~4.23!

FIG. 12. Density-of-states functions for the photonic bands
lustrated in Fig. 9 showing~a! s polarization and~b! p polarization.
For s polarization, the continuous lines indicate the contributions
modes for which the local wave vector is real, while the brok
lines indicate contributions for which one component of the lo
wave vector is imaginary. Forp polarization, all of the modes hav
real local wave vectors.
nt
s

.

,

is

wherei5x or y. Evaluation of this expression at the wav
vector components that satisfy the dispersion relation~4.17!
or ~4.19! leads with the use of Eq.~4.16! to

U ]

]m i
@v2vb~m i !#U5 c2

&mv U sin1/2Smav2

c2
1
2a

m D
sinSmav2

2c2
1

a

m
1

p

4 DU .
~4.24!

The density of states~4.22! therefore takes the form

r~v!5
2&mv

pac2 U sinSmav2

2c2
1

a

m
1

p

4 D
sin1/2Smav2

c2
1
2a

m D U , ~4.25!

where an additional factor of 2 results from the two valu
6mi of the Bloch wave-vector component for each value
v. This function is shown in Fig. 13, and it is seen that the
is good agreement with the exact calculation in Fig. 12~a!
from the third band onward, where the tight-binding appro
mation is justified for the assumed value ofm52a. The
argument of the sine in the denominator of Eq.~4.25! van-
ishes at all of the band-edge frequencies given in Eqs.~4.20!
and ~4.21!, and the density of states thus acquires inve
square-root singularities of the form

r~v!5
1

pac S 2mv0

auv2v0u
D 1/2, ~4.26!

wherev0 is the appropriate adjacent band-edge frequenc
The contribution to the density of states from each pair

overlapping bands has the same integrated value, whic
straightforwardly obtained from Eq.~4.25! with the use of
Eqs.~4.20! and ~4.21!, by a suitable change of variable, as

E
band

dv r~v!5
2&

pa2 E0
p/2

du

sinS u1
p

4 D
sin1/2~2u!

5
2&

pa2 E0
p/2

du~ tanu!1/25
2

a2
, ~4.27!

-

f

l

FIG. 13. Density of states for the tight-bindings-polarized
modes calculated from Eq.~4.25!.
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where a standard integral has been used@24#. This result
agrees with the value obtained for the total density of sta
in a pair of bands by straightforward integration of Eq.~4.22!
over v. The overall density of states of the tightly boun
locally evanescent modes can be assessed by formin
smoothed average of their contributions. Thus the repea
patterns of four bands occur approximately at frequenc
given by Eqs.~4.20! and ~4.21! as

v5cS 4pn

am D 1/2. ~4.28!

The separation between these frequencies is

Dv'cS p

amnD
1/2

5
2pc2

mav
, ~4.29!

sinceDn51, and the smoothed density of states is theref

r~v!5
4

a2Dv
5
2mv

pac2
. ~4.30!

For comparison, the density of states for each polarizatio
a two-dimensional space entirely filled with a material
relative permittivity« is

r~v!5v«/2pc2, ~4.31!

and the multiplicative factor 4m/a in Eq. ~4.30! relative to
the density of states in free space thus accounts for the
ditional density of states provided by the dielectric mate
for both polarizations.

That all of the additional density of states should app
in s polarization and none inp polarization is a consequenc
of the restriction of the single-sheet guided-wave modess
polarization, as discussed in Sec. II B. A superficial comp
son of the two parts of Fig. 12 thus gives the impression t
there are more modes withs polarization than withp polar-
ization, but this is misleading. The number of independ
modes in each extended Brillouin zone of a periodic sys
is equal to the numberN of unit cells in the sample. Thus in
the reduced zone scheme, each band must containN states,
which correspond to the allowed wave vectors, and the t
numbers of states are the same for each polarization.
relative permittivity in any real material is a function of th
frequency,«~v!, and it satisfies the sum rule@25#

E
0

`

dv@Re«~v!21#50, ~4.32!

provided that«~v! has no pole atv50. The enhancement o
the density of states~4.31!, for regions of the frequency
where«~v! is greater than unity, is therefore compensated
other regions of the frequency, where«~v! is smaller than
unity. The dispersion curves shown in Fig. 10 and the d
sities of states shown in Fig. 12 are valid over a limited ran
of frequencies in which the value of«~v! is assumed essen
tially constant. However, a more extended range of calc
tion, with a properly frequency dependent«~v!, would show
a reduction in the number ofs polarized modes at highe
frequencies in accordance with Eqs.~4.31! and ~4.32!, to
give the same total numbers of modes for both polarizatio
s
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The remaining features in the densities of states show
Fig. 12 are associated with the locally propagating mode
the mixed propagating-evanescent modes. The linear co
butions at low frequency for both polarizations have t
magnitudes predicted by Eq.~4.31! when« is replaced by the
averaged relative permittivities that appear in the squ
roots in the long-wavelength linear dispersion relations
rived in Eqs.~4.10! and~4.11!. The locally propagating con
tributions for s polarization and all of thep polarization
density of states retain the characteristic two-dimensio
critical-point singularities at the higher frequencies illu
trated, in contrast to the one-dimensional characters of
locally evanescent contributions.

The contributions of the locally propagating and loca
evanescent waves to the densities of states show quite d
ent behaviors asm is increased from its empty-lattice o
free-space value of 0. Thus the existence of fixed value
va/c, independent ofm, for selected points on the locall
propagating dispersion curves, mentioned in Sec. IV A,
sures that the overall distribution of their density of sta
shows only modest changes asm is increased. By contrast
the lack of any fixed values ofva/c on the locally evanes-
cent dispersion curves, mentioned in Sec. IV B, allows la
changes in their density of states asm is increased. This
freedom permits the density of states~4.30! to grow linearly
with m as the frequencies of the locally evanescent Blo
waves diminish in accordance with Eq.~4.28!, and it leads to
the apparent excess density of states ins polarization for the
limited ranges of frequency shown in Figs. 10 and 12.

It is seen from Fig. 12 that three gaps appear in the co
bined density of states in the range of frequencies cove
The ranges ofva/c, for which there are no photonic mode
of the lattice, are found with the use of Eqs.~4.20! and~4.21!
to be

S 3p

2
2
1

2D
1/2

to S 2p2
1

2D
1/2

,

S 5p

2
2
1

2D
1/2

to S 3p2
1

2D
1/2

,

S 11p2 2
1

2D
1/2

to S 6p2
1

2D
1/2

. ~4.33!

The dispositions of gaps in the density of states are impor
for applications to semiconductor lasers, as they prod
quenching of the spontaneous emission over the corresp
ing transition frequencies. It should be emphasized, howe
that the gaps identified here are valid only for propagation
the xy plane and that the addition ofz components of the
wave vector may lead to photon modes within these gap

V. CONCLUSIONS

We have calculated the photonic properties of a sin
dielectric sheet, a one-dimensional lattice of such sheets,
a two-dimensional square lattice of the same sheets, in
limit where the sheet thickness tends to zero as its rela
permittivity tends to infinity. Although these lattices cann
be constructed in practice, their properties resemble thos
structures with appropriately thin slabs of high relative p
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mittivity, and they have the advantage that their photo
properties can be evaluated analytically to a large extent.
analytical treatment provides a more detailed physical un
standing of the natures of the photonic Bloch waves in s
structures.

We have accordingly identified the separation of t
Bloch waves into two distinct categories. Thus a few of t
waves fors polarization and all of the waves forp polariza-
tion are constructed from fields with locally propagati
characters in the individual primitive cells of the lattic
whereas the majority of the Bloch waves fors polarization
are formed from fields with locally evanescent characters
the individual primitive cells. The latter waves are in tu
associated with the waveguide modes of the dielectric she
which thus dominate the low-frequency photonic band str
ture and density of states of the two-dimensional lattice
waves of s polarization. The locally evanescent photon
bands are assembled from a stack of the basic build
blocks illustrated in Fig. 11 and these give a characteri
repeating pattern to the band structure fors polarization il-
lustrated in Fig. 10~a!. The corresponding contributions t
the density of states also form a repeating pattern as il
trated in Figs. 12~a! and 13. We have shown that the local
evanescent modes enhance the photonic density of s
above its free-space value when 4m.a, but that this is com-
pensated by reductions below the free-space value that o
for 4m,a in real dielectric materials, where«~v! satisfies
the required sum rule~4.32!. By contrast, the density o
states of the locally propagating modes is less sensitive to
value ofm, as a selection of the Bloch waves at symme
points have their frequencies anchored tom-independent val-
ues.

Our analytical results may be compared with numeri
calculations@3,15# carried out for the same lattice as illu
trated in Fig. 7, but with sheets of nonzero thicknessd
50.16a) and finite relative permittivity~«58.9!, leading to
the parameter valuem/2a50.71. The published dispersio
relations extend up to a frequency given byva/c'3.8. In
this work, the material relative permittivity had a unifor
value, including regions common to two sheets, in contras
t
ps

c-
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the additive property~4.1! assumed in our analytical mode
The calculated band structures resemble those of our Fig
and the resemblance is closer when we take the same v
of m/2a. The lowest evanescent-wave bands fors polariza-
tion in Fig. 1~b! of @3,15# are further distorted from the tight
binding forms, with a small lifting of the degeneracies atG
and in theS direction, but the part of the next higher ban
visible in this figure is closely similar to the form shown
our Fig. 10~a!. There are no absolute band gaps, and
existence of a gap forp polarization alone, with none fors
polarization, is explained in terms of the different distrib
tions of fields in dielectric and air at the symmetry pointX
for the lowest bands in the two polarizations.

The calculations reported here are restricted to propa
tion in the two-dimensional plane of the lattice, with wav
vectors perpendicular to the dielectric sheets and w
defineds andp polarizations. Future work should extend th
calculations to propagation at arbitrary angles to the she
to obtain the full three-dimensional band structure; such
extension is complicated by the removal of the simple se
ration of the fields intos andp polarizations when the wave
vector has an out-of-plane component. The results would
termine the complete density of states of the lattice, an
would be possible to calculate the variation of the atom
spontaneous emission rate as a function of the atomic p
tion and transition frequency. More generally, the analyti
methods can be applied to other geometries, for exam
triangular and hexagonal lattices, and to three dimension
periodic structures. However, the vector nature of the e
tromagnetic fields greatly complicates any more general
culations, particularly in comparison with the correspondi
band theories for the scalar electron wave functions, and
ther extensions of the analytical approach will be limited
these practical difficulties.
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